Ir al contenido

Documat


Global Behavior and Bifurcation in a Class of Host–Parasitoid Models with a Constant Host Refuge

  • Kalabušić, S [1] ; Dž, Drino [1] ; Pilav, E [1]
    1. [1] University of Sarajevo

      University of Sarajevo

      Bosnia y Herzegovina

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00403-3
  • Enlaces
  • Resumen
    • In this paper, by using the analytical approach, we investigate the global behavior and bifurcation in a class of host–parasitoid models when a constant number of the hosts are safe from parasitism. We find the conditions for the existence and stability of the equilibria. We detect the existence of the Neimark–Sacker bifurcation under certain conditions. We explicitly derived the approximation of the limit curve depending on the parameters that appear in the model. We show that a locally asymptotically stable equilibrium can never be transformed into unstable by increasing a constant number of hosts that are using a refuge. Specially, we consider the effect of constant host refuge in (S),(HV), and (PP) models.The obtained results show that the constant number of hosts in refuge affects the qualitative behavior of these models in comparison to the same models without refuge. The theory is confirmed and illustrated numerically.

  • Referencias bibliográficas
    • 1. Bailey, V.A., Nicholson, J.: The balance of animal populations. Proc. Zool. Soc. Lond. 3, 551–598 (1935)
    • 2. Beddington, J.R., Free, C.A., Lawton, J.H.: Dynamics complexity in predator–pray models framed in difference equations. Nature 255, 58–60...
    • 3. Beddington, J.R., Free, C.A., Lawton, J.H.: Characteristics of successful natural enemies in models of biological control of insect pests....
    • 4. Bešo, E., Muji´c, N., Kalabuši´c, S., Pilav, E.: Stability of a certain class of a host–parasitoid models with a spatial refuge effect....
    • 5. Bešo, E., Muji´c, N., Kalabuši´c, S., Pilav, E.: Neimark–Sacker bifurcation and stability of a certain class of a host–parasitoid models...
    • 6. Caltagirone, L.E., Doutt, R.L.: The history of the vedalia beetle importation to California and its impact on the development of biological...
    • 7. Chow, Y., Jang, S.: Neimark–Sacker bifurcations in a host–parasitoid system with a host refuge. Discrete Contin. Dyn. Syst. Ser. B. 21(6),...
    • 8. Costantino, R.F., Cushing, J.M., Dennis, B., Desharnais, R.A.: Experimentally induced transitions in the dynamic behaviour of insect populations....
    • 9. Costantino, R.F., Desharnais, R.A., Cushing, J.M., Dennis, B.: Chaotic dynamics in an insect population. Science 275, 389–391 (1997)
    • 10. Cushing, J.M.: Cycle chains and the LPA model. J. Differ. Equ. Appl. 9, 655–670 (2003)
    • 11. Cushing, J.M., Costantino, R.F., Dennis, B., Desharnais, R.A., Henson, S.M.: Chaos in Ecology: Experimental Nonlinear Dynamics, Theoretical...
    • 12. DeBach, P., Rosen, D.: Biological Control by Natural Enemies. Cambridge University Press, Cambridge (1991)
    • 13. Din, Q.: Global behavior of a host–parasitoid model under the constant refuge effect. Appl. Math. Model. (2016). https://doi.org/10.1016/j.apm.2015.09.012
    • 14. Din, Q., Saeed, U.: Bifurcation analysis and chaos control in a host–parasitoid model. Math. Methods Appl. Sci. 40(14), 5391–5406 (2017)....
    • 15. Din, Q.: Qualitative analysis and chaos control in a density-dependent host–parasitoid system. Int. J. Dyn. Control. 6, 778–798 (2018)
    • 16. Din, Q., Hussain, M.: Controlling chaos and Neimark–Sacker bifurcation in a host–parasitoid model. Asian J. Control. 21(3), 1202–1215...
    • 17. Din, Q.: Controlling chaos in a discrete-time prey–predator model with Allee effects. Int. J. Dyn. Control 6, 858–872 (2018)
    • 18. Grove, E.A., Ladas, G.: Periodicities in Nonlinear Difference Equations. Chapman and Hall/CRC Press, Boca Raton (2004)
    • 19. Hassel, M.P.: Host–parasitoid population dynamics. J. Anim. Ecol. 69, 543–566 (2000)
    • 20. Hastings, A.: Population Biology. Springer, New York (1996)
    • 21. Hassel, M.P., May, R.M.: Aggregation of predators and insect parasites and its effect on stability. J. Anim. Ecol. 43(2), 567–594 (1974)
    • 22. Hassell, M.P.: The Dynamics of Arthropod Predator–Pray Systems. Princeton University Press, Princeton (1974)
    • 23. Hassel, M.P., Rogers, D.J.: Insect parasite response in the development of population model. J. Anim. Ecol. 41, 661–676 (1972)
    • 24. Hasell, M.P., Varley, G.C.: New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133–1137...
    • 25. Hasell, M.P.: Parasitism in patchy environments, IMA. J. Math. Appl. Med. Biol. 1, 123–133 (1984)
    • 26. Jang, S.: Alle effects in a disrete-time host–parasitoid model. J. Differ. Equ. Appl. 12, 165–181 (2006)
    • 27. Jang, S.: Discrete-time host–parasitoid models with Alle effect: density dependence vs. parasitism. J. Differ. Equ. Appl. 17, 525–539...
    • 28. Jamieson, W.T.: On the global behavior of May’s host–parasitoid model. J. Differ. Equ. Appl. 25, 583–596 (2019). https://doi.org/10.1080/10236198.2019.1613387
    • 29. Kapçak, S., Ufuktepe, U., Elaydi, S.: Stability of a predator–prey model with refuge effect. J. Differ. Equ. Appl. 22(7), 989–1004 (2016)....
    • 30. Liz, E., Herrera, A.R.: Chaos in discrete structured populations model. SIAM J. Appl. Dyn. Syst. 11(4), 1200–1214 (2012)
    • 31. Liu, H., Zhang, K., Ye, Y., Wei, Y., Ma, M.: Dynamic complexity and bifurcation analysis of a host– parasitoid model with Allee effect...
    • 32. Lauwerier, H.A., Metz, J.A.: Hopf bifurcation in host–parasitoid models. IMA J. Math. Appl. Med. Biol. 3, 191–210 (1986)
    • 33. Liu, X., Chu, Y., Liu, Y.: Bifurcation and chaos in a host–parasitoid model with a lower bound for the host. Adv. Differ. Equ. 2018, 31...
    • 34. Livadiotis, G., Assas, L., Dennis, B., Elaydi, S., Kwesi, E.: A discrete-time host–parasitoid model with Alle effect. J. Biol. Dyn. 9,...
    • 35. Ma, X., Din, Q., Rafaqat, M., Javaid, N., Feng, Y.: A density-dependent host–parasitoid model with stability, bifurcation and chaos control....
    • 36. May, R.M.: Host–parasitoid systems in patchy environments: a phenomenological model. J. Anim. Ecol. 47, 833–844 (1978)
    • 37. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)
    • 38. May, R.M.: Mathematical models in whaling and fisheries management. In: Oster, G.F. (ed.) Some Mathematical Questions in Biology, pp....
    • 39. May, R.M., Hassell, M.P.: Population dynamics and biological control. Philos. Trans. R. Soc. Lond. B. 318, 129–169 (1988)
    • 40. McNar, J.N.: The effects of refuges on predator–pray interactions: a reconsideration. Theor. Popul. Biol. 29(1), 38–63 (1986). https://doi.org/10.1016/0040-5809(86)90004-3
    • 41. Murakami, K.: The invariant curve caused by Neimark–Sacker bifurcation. Dyn. Contin. Discrete Impulsive Syst. Ser. A Math. Anal. 9(1),...
    • 42. Mills, N.J., Getz, W.M.: Modelling the biological control of insect pests: a review of host–parasitoid models. Ecol. Model. 92, 121–143...
    • 43. Rogers, D.J.: Random search and insect population models. J. Anim. Ecol. 41, 369–383 (1972)
    • 44. Tang, S., Chen, L.: Chaos in functional response host–parasitoid ecosystem models. Chaos Solitons Fractals 39, 1259–1269 (2009)
    • 45. Thompson, W.: On the effect of random oviposition on the action of entomophagous parasites as agents of natural control. Parasitology...
    • 46. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, 2nd edn. Springer, New York...
    • 47. Wu, D., Zhao, H.: Global qualitative analysis of a discrete host-parasitoid model with refuge and strong Allee effects. Math. Methods....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno