Ir al contenido

Documat


Properties of Traveling Wave Fronts for Three Species Lotka–Volterra System

  • Meng Yanling [1] ; Zhang, Weiguo [1]
    1. [1] University of Shanghai for Science and Technology

      University of Shanghai for Science and Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00404-2
  • Enlaces
  • Resumen
    • The purpose of this paper is to investigate properties of traveling wave fronts for three species Lotka–Volterra system: the asymptotic behavior and uniqueness. Applying the Ikehara’s theorem, we determine the exponential rates of traveling wave fronts at the negative infinity. We further investigate the uniqueness of traveling wave fronts with the help of the sliding method.

  • Referencias bibliográficas
    • 1. Chen, X., Fu, S.C., Guo, J.S.: Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices. SIAM J. Math. Anal. 38,...
    • 2. Chen, X.: Existence, uniqueness and asymptotic stability Of traveling waves in nonlocal evolution equations. Adv. Differ. Equ. 2, 125–160...
    • 3. Carr, J., Chmaj, A.: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc. 132, 2433–2439 (1998)
    • 4. Conley, C., Gardner, R.: An application of the generalized Morse index to traveling wave solutions of a competitive reaction diffusion...
    • 5. Ducrot, A., Nadin, G.: Asymptotic behaviour of travelling waves for the delayed fisher-KPP equation. J. Differ. Equ. 256, 3115–3140 (2014)
    • 6. Ellison, W., Ellison, F.: Prime Numbers, A Wiley-Interscience Publication. Wiley, New York (1985)
    • 7. Fisher, R.A.: The Genetical Theory of Natural Selection: A Complete Variorum Edtion. Oxford University Press, Oxford (1999)
    • 8. Fisher, R.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)
    • 9. Gardner, R.: Existence of traveling wave solutions of competing models, A degree theoretic approach. J. Differ. Equ. 44, 343–364 (1982)
    • 10. Guo, J.S., Wu, C.H.: Traveling wave front for a two-component lattice dynamical system arising in competition models. J. Differ. Equ....
    • 11. Hung, L.C.: Traveling wave solutions of competitive-cooperative Lotka–Volterra systems of three species. Nonlinear Anal. Real Word Appl....
    • 12. Huang, J., Zou, X.: traveling wavefronts in diffusive and cooperative Lotka–Voltera system with delays. J. Math. Anal. Appl. 271, 455–466...
    • 13. Hou, X., Leung, A.W.: Traveling wave solutions for a competitive reaction-diffusion sysrem and their asymptotics. Nonlinear Anal. Real...
    • 14. Hsu, C.H., Yang, T.S.: Existence, uniqueness, monotonicity and asymptotic behavior of traveling waves for a epidemic model, Nonlinearity,...
    • 15. Kan-on, Y.: Parameter dependence of propagation speed of travelling waves for competition-diffusion equations. SIAM J. Math. Anal. 26(2),...
    • 16. Kan-on, Y.: Fisher wave fronts for the Lotka–Volterra competition model with diffusion. Nonlinear Anal. 28, 145–164 (1997)
    • 17. Li, K., Huang, J.H., Li, X.: Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system....
    • 18. Li, K., Li, X.: Asymptotic behavior and uniqueness of traveiling wave solutions in Ricker competiton system. J. Math. Anal. Appl. 389,...
    • 19. Li, K., Li, X.: Traveling wave solutions in a delayed diffusive competition system. Nonlinear Anal. TMA. 75, 3705–3722 (2012)
    • 20. Li, B., Weinberger, H., Lewis, M.: Spreading speeds as slowest wave speeds for cooperative systems. Math. Biosci. 196, 82–98 (2005)
    • 21. Lv, G.Y., Wang, M.X.: Traveling wave front in diffusive and competitive Lotka–Volterra system with delays. Nonlinear Anal. Real Word Appl....
    • 22. Li, W.T., Lin, G., Ruan, S.G.: Existence of travelling wave solutions in delayed reaction diffusion systems with applications to diffusion-competition...
    • 23. Ma, S.H., Wu, X., Yuan, R.: Nonlinear stability of traveling wavefronts for competitive-cooperative Lotka–Volterra systems of three species....
    • 24. Schaaf, K.: Asymptotic behavier and traveling wave solutions for parabolic functional-differential equations. Trans. Am. Math. Soc. 302,...
    • 25. Tang, M.M., Fife, P.C.: Propagating fronts for competing species equations with diffusion. Arch. Ration. Mech. Anal. 73, 69–77 (1980)
    • 26. Volpert, A.I., Volpert, V.A., Volpert, V.A.: Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, vol....
    • 27. Widder, D.V.: The Laplace Tranform. Princeton University Press, Princeton (1941)
    • 28. Yu, Z.X., Mei, M.: Uniqueness and stability of traveling waves for cellular neural networks with multiple delays. J. Differ. Equ. 260,...
    • 29. Yu, Z.X., Yuan, R.: Existence, asymptotics and uniqueness of traveling waves for nonlocal diffusion systems with delayed nonlocal response....
    • 30. Yu, Z.X., Yuan, R.: Traveling wave solutions in nonlocal reaction-diffusion systems with delays and applications. ANZIAM J. 51, 49–66...
    • 31. Zhao, G., Ruan, S.: Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka–Volterra competition...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno