Ir al contenido

Documat


Asymptotic Dynamics of a Difference Equation with a Parabolic Equilibrium

  • Coll, B [1] Árbol académico ; Gasull, A [2] Árbol académico ; Prohens, R [1] Árbol académico
    1. [1] Universitat de les Illes Balears

      Universitat de les Illes Balears

      Palma de Mallorca, España

    2. [2] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00406-0
  • Enlaces
  • Resumen
    • The aim of this work is the study of the asymptotic dynamical behaviour, of solutions that approach parabolic fixed points in difference equations. In one dimensional difference equations, we present the asymptotic development for positive solutions tending to the fixed point. For higher dimensions, through the study of two families of difference equations in the two and three dimensional case, we take a look at the asymptotic dynamic behaviour. To show the existence of solutions we rely on the parametrization method.

  • Referencias bibliográficas
    • 1. Baldomà, I., Fontich, E.: Stable manifolds associated to fixed points with linear part equal to identity. J. Differ. Equ. 197(1), 45–72...
    • 2. Baldomà, I., Fontich, E., de la Llave, R., Martín, P.: The parameterization method for one-dimensional invariant manifolds of higher dimensional...
    • 3. Baldomà, I., Fontich, E., Martín, P.: Invariant manifolds of parabolic fixed points (I). Existence and depence on parameters (2016). arXiv:1603.02533v1...
    • 4. Baldomà, I., Fontich, E., Martín, P.: Invariant manifolds of parabolic fixed points (II). Approximations by sums of homogeneous functions...
    • 5. Berg, L.: Asymptotische Darstellungen und Entwicklungen, Hoch-schulbücher für Mathematik, vol. 66. VEB Deutscher Verlag der Wissenschaften,...
    • 6. Berg, L.: On the asymptotics of nonlinear difference equations. J. Anal. Appl. 21(4), 1061–1074 (2002)
    • 7. Berg, L.: Inclusion theorems for non-linear difference equations with applications. J. Differ. Equ. Appl. 10(4), 399–408 (2004)
    • 8. Berg, L.: On the asymptotics of the difference equation xn−3 = xn(1 + xn−1xn−2). J. Differ. Equ. Appl. 14(1), 105–108 (2008)
    • 9. Berg, L., Stevi´c, S.: On the asymptotics of the difference equation yn(1 + yn−1 ... yn−k+1) = yn−k . J. Differ. Equ. Appl....
    • 10. Beverton, R.J., Holt, S.J.: On the Dynamics of Exploited Fish Populations, vol. 19. Fish. Invest, London (1957)
    • 11. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant...
    • 12. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. II. Regularity with respect to parameters....
    • 13. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. III. Overview and applications. J. Differ....
    • 14. Carleson, L., Gamelin, T.: Complex Dynamics Universitext: Tracts in Mathematics. Springer, New York, Inc (1993). ISBN 13: 978-0-387-97942-7
    • 15. Casasayas, J., Fontich, E., Nunes, A.: Invariant manifolds for a class of parabolic points. Nonlinearity 5, 1193–1210 (1992)
    • 16. Easton, R.W.: Parabolic orbits in the planar three-body problem. J. Differ. Equ. 52, 116–134 (1984)
    • 17. Fontich, E.: Stable curves asymptotic to a degenerate fixed point. Nonlinear Anal. 35, 711–733 (1999)
    • 18. Grove, E. A., Kent, C. M., Ladas, G., Valicenti, S., Levins R.: Global stability in some population models. Communications in difference...
    • 19. Gutnik, L., Stevi´c, S.: On the Behaviour of the Solutions of a Second-Order Difference Equation. Discrete Dyn. Nat. Soc. ID 27562 (2007)
    • 20. Haro, A., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps:...
    • 21. Haro, A., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps:...
    • 22. Huo, H.F., Li, W.T.: Permanence and global stability of positive solutions of a nonautonomous discrete ratio-dependent predator–prey model....
    • 23. Kuang, Y., Cushing, J.M.: Global stability in a nonlinear difference-delay equation model of flour beetle population growth. J. Differ....
    • 24. Martínez, R., Pinyol, C.: Parabolic orbits in the elliptic restricted three body problem. J. Differ. Equ. 111, 299–339 (1994)
    • 25. McGehee, R.: A stable manifold theorem for degenerate fixed points with applications to celestial mechanics. J. Differ. Equ. 14, 70–88...
    • 26. Milnor, J.: Dynamics in One Complex Variable. Institute for Mathematical Sciences, SUNY, Stony Brook (1991)
    • 27. Resman, M.: ε-Neighborhoods of orbits and formal classification of parabolic diffeomorphisms. Discrete Contin. Dyn. A 33–8, 3767–3790...
    • 28. Robinson, C.: Homoclinic orbits and oscillation for the planar three-body problem. J. Differ. Equ. 52, 356–377 (1984)
    • 29. Simó, C.: Stability of degenerate fixed points of analytic area preserving mappings. Bifurcation, Ergodic Theory and Applications (Dijon,...
    • 30. Slotnick, D.L.: Asymptotic behavior of solutions of canonical systems near a closed, unstable orbit. Contributions to The Theory of Non-linear...
    • 31. Stevi´c, S.: Asymptotic behaviour of a sequence defined by iteration. Mat. Vesnik (3–4) 48, 99–105 (1996)
    • 32. Stevi´c, S.: Behavior of the positive solutions of the generalized Beddington-Holt equation. Panam. Math. J. 10(4), 77–85 (2000)
    • 33. Stevi´c, S.: On the recursive sequence xn+1 = xn−1/g(xn). Taiwan. J. Math. 6–3, 405–414 (2002)
    • 34. Stevi´c, S.: Asymptotic behavior of a nonlinear difference equation. Indian J. Pure Appl. Math. 34(12), 1681–1687 (2003)
    • 35. Stevi´c, S.: Asymptotic behaviour of a class of nonlinear difference equations. Discrete Dyn. Nat. Soc. ID 47156 (2006)
    • 36. Stevi´c, S.: On positive solutions of a (k+1)th order difference equation. Appl. Math. Lett. 19–5, 427–431 (2006)
    • 37. Stevi´c, S.: On monotone solutions of some classes of difference equations. Discrete Dyn. Nat. Soc. ID 53890 (2006)
    • 38. Stevi´c, S.: On a discrete epidemic model. Discrete Dyn. Nat. Soc. ID 87519 (2007)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno