Ir al contenido

Documat


Clark’s Equation: A Useful Difference Equation for Population Models, Predictive Control, and Numerical Approximations

  • Eduardo, Liz [1]
    1. [1] Universidade de Vigo

      Universidade de Vigo

      Vigo, España

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00405-1
  • Enlaces
  • Resumen
    • A one-dimensional discrete-time dynamical system can be also seen as a recurrence, a difference equation, or an iteration scheme; and sometimes theoretical results come from different contexts. In this paper, I present a short survey about a particular family of one-dimensional maps that I have found in different situations. First, I introduce and explain the various motivations for the equation, and then I state some relevant results, with suitable references. Finally, I include some open problems and some words of caution about a series of recent poor-quality papers that, pretending to rediscover this equation, provide trivial results.

  • Referencias bibliográficas
    • 1. Ashish, J. Cao.: A novel fixed point feedback approach studying the dynamical behaviors of standard logistic map, Internat. J. Bifur. Chaos...
    • 2. Ashish, J., Cao, R.: Chugh, Chaotic behavior of logistic map in superior orbit and an improved chaosbased traffic control model. Nonl....
    • 3. Bartha, F.A., Garab, Á.: Necessary and sufficient condition for the global stability of a delayed discretetime neuron model. J. Comput....
    • 4. Beverton, R.J.H., Holt, S.J.: On the dynamics of exploited fish populations, Fisheries Investigations, Series 2, vol. 19. H. M. Stationery...
    • 5. Boccaletti, S., Grebogi, C., Lai, Y.-C., Mancini, H., Maza, D.: The control of chaos: theory and applications. Physics Reports 329, 103–197...
    • 6. Browder, F.E., Petryshyn, W.V.: Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 20, 197–228 (1967)
    • 7. Clark, C.W.: Mathematical bioeconomics: the optimal management of renewable resources. JohnWiley & Sons, New York (1976)
    • 8. Clark, C.W.: A delayed recruitment model of population dynamics with an application to baleen whale populations. J. Math. Biol. 3, 381–391...
    • 9. de Sousa Vieira, M., Lichtenberg, A.J.: Controlling chaos using nonlinear feedback with delay. Phys. Rev. E 54, 1200–1207 (1996)
    • 10. El-Morshedy, H.A., Liz, E.: Globally attracting fixed points in higher order discrete population models. J. Math. Biol. 53, 365–384 (2006)
    • 11. El-Morshedy, H.A., Jiménez López, V., Liz, E.: Periodic points and stability in Clark’s delayed recruitment model. Nonlinear Anal.: Real...
    • 12. Eskola, H.T., Geritz, S.A.: On the mechanistic derivation of various discrete-time population models. Bull. Math. Biol. 69, 329–346 (2007)
    • 13. Fisher, M.E.: Stability of a class of delay-difference equations. Nonlinear Anal. 8, 645–654 (1984)
    • 14. Garab, A., Jiménez López, V., Liz, E.: Global asymptotic stability of a generalization of the Pielou difference equation. Mediterr. J....
    • 15. Jiménez López, V., Parreño, E.: LAS and negative Schwarzian derivative do not imply GAS in Clark’s equation. J. Dynam. Differential Equations...
    • 16. Johnson, G.G.: Fixed points by mean value iterations. Proc. Am. Math. Soc. 34, 193–194 (1972)
    • 17. Krasnosel’skii, M.A.: Two remarks about the method of successive approximations. Uspekhi Mat. Nauk. 10, 123–127 (1955). (in Russian)
    • 18. Kumari, S., Chugh, R.: A new experiment with the convergence and stability of logistic map via SP orbit. Int. J. Appl. Eng. Res. 14, 797–801...
    • 19. Lasota, A.: Ergodic problems in biology. Asterisque 50, 239–250 (1977)
    • 20. Liz, E., Franco, D.: Global stabilization of fixed points using predictive control, Chaos 20, 023124, 9 pp (2010)
    • 21. Liz, E.: Complex dynamics of survival and extinction in simple population models with harvesting. Theor. Ecol. 3, 209–221 (2010)
    • 22. Liz, E.: A global picture of the gamma-Ricker map: a flexible discrete-time model with factors of positive and negative density dependence....
    • 23. Liz, E., Buedo-Fernández, S.: A new formula to get sharp global stability criteria for one-dimensional discrete-time models. Qual. Theory...
    • 24. Liz, E., Lois Prados, C.: A note on the Lasota discrete model for blood cell production. Discrete Contin. Dyn. Syst. B 25, 701–713 (2020)
    • 25. Liz, E., Pilarczyk, P.: Global dynamics in a stage-structured discrete-time population model with harvesting. J. Theor. Biol. 297, 148–165...
    • 26. Liz, E., Ruiz-Herrera, A.: The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting....
    • 27. Mallet-Paret, J., Nussbaum, R.D.: A differential-delay equation arising in optics and physiology. SIAM J. Math. Anal. 20, 249–292 (1989)
    • 28. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)
    • 29. May, R.M.: Mathematical models in whaling and fisheries management, in Some mathematical questions in biology (Proc. 14th Sympos., San...
    • 30. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)
    • 31. Milton, J.G., Bélair, J.: Chaos, noise, and extinction in models of population growth. Theor. Popul. Biol. 37, 273–290 (1990)
    • 32. Moran, P.A.P.: Some remarks on animal population dynamics. Biometrics 6, 250–258 (1950)
    • 33. Nicholson, A.J.: The balance of animal populations. J. Anim. Ecol. 2, 132–178 (1933)
    • 34. Phillips, G.M., Taylor, P.J.: Theory and applications of numerical analysis, 2nd edn. Elsevier, London (1996)
    • 35. Polyak, B.T.: Chaos stabilization by predictive control. Autom. Remote Control 66, 1791–1804 (2005)
    • 36. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992)
    • 37. Quinn, T.J., Deriso, R.B.: Quantitative Fish Dynamics. Oxford University Press, New York (1999)
    • 38. Rani, M., Agarwal, R.: A new experimental approach to study the stability of logistic map. Chaos Solit. Fract. 4, 2062–2066 (2009)
    • 39. Ricker, W.E.: Stock and recruitment. J. Fish. Res. Bd. Can. 11, 559–623 (1954)
    • 40. Sander, E., Yorke, J.A.: Period-doubling cascades galore Ergod. Theor. Dyn. Syst. 31, 1249–1267 (2011)
    • 41. Schaefer, H.: On the method of successive approximations. J. Deutsch. Math. Verein. 59, 131–140 (1957). (in German)
    • 42. Thieme, H.R.: Mathematics in Population Biology. Princeton University Press, Princeton (2003)
    • 43. Thunberg, H.: Periodicity versus chaos in one-dimensional dynamics. SIAM Rev. 43, 3–30 (2001)
    • 44. Ushio, T., Yamamoto, S.: Prediction-based control of chaos. Phys. Lett. A 264, 30–35 (1999)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno