Ir al contenido

Documat


Global Dynamics for a Vector-Borne Disease Model with Class-Age-Dependent Vaccination, Latency and General Incidence Rate

  • Wang, Shengfu [1] ; Lin-Fei, Nie [1]
    1. [1] Xinjiang University

      Xinjiang University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00407-z
  • Enlaces
  • Resumen
    • Considering the variability of vaccine efficacy and infection conversion rate, a mathematical model for vector-borne disease transmission by incorporating age of vaccination and infection is proposed, where, the latency of disease in the host population, general nonlinear incidence rate, and vaccination effectiveness are also formulated to analyze their effects for the spread of the vector-borne. The existence and local stability of steady states, the uniform persistence and asymptotic smoothness of this model are studied. Moreover, the exact expression of the basic reproduction number is derived. By applying the fluctuation lemma and the suitable Lyapunov functional, the global dynamics of steady states are investigated. That is, if the basic reproduction number is less than 1, the disease-free steady state is globally asymptomatically stable, and the disease dies out; if the basic reproduction number is greater than 1, the endemic steady state is globally asymptomatically stable, and the disease becomes endemic. Finally, numerical simulations are performed to explain the main theoretical results.

  • Referencias bibliográficas
    • 1. Norsakran, S., Perng, G.C.: Alternate hypotheis on the pathogenesis of dengue hemorgic fever (DHF)/dengue shock syndrome (DSS) in the dengue...
    • 2. Esteva, L., Vargas, C.: A model for dengue disease with variable human population. J. Math. Biol. 38(3), 220–240 (1999)
    • 3. Derouich, M., Boutayeb, A., Twizell, E.H.: A model of dengue fever. BioMed. Eng. OnLine 2–4 (2003)
    • 4. Cai, L.M., Guo, S.M., Li, X.Z.: Global dynamics of a dengue epidemic mathematics model. Chaos Soliton. Fract. 42, 2297–2304 (2009)
    • 5. Amaku, M., Coutinho, F.A.B., Raimundo, S.M.: A comparative analysis of the relative efficacy of vector-control strategies against dengue...
    • 6. Chan, M., Johansson, M.A.: The incubation periods of dengue viruses. PLoS ONE 7(11), e50972 (2012)
    • 7. Esteva, L., Vargas, C.: Analysis of a dengue disease transmission model. Math. Biosci. 150(2), 131–151 (1998)
    • 8. Feng, Z.L., Velasco-Hernandez, J.X.: Competitive excusion in a vector-host model for the dengue fever. J. Math. Biol. 35, 523–544 (1997)
    • 9. Focks, D.A., Brenner, R.J., Hayes, J.: Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of...
    • 10. Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A.: Vectorial capacity of Aedes aegypti: effects of temperature and implications for global...
    • 11. Sahu, G.P., Dhar, J.: Analysis of an SVEIS epidemic model with partial temporary immunity and saturaton incidence rate. Appl. Math. Model....
    • 12. Tang, B., Xiao, Y.N., Tang, S.Y.: Modelling weekly vector control against dengue in the Guangdong Province of China. J. Theor. Biol. 410,...
    • 13. Yang, C.X., Nie, L.F.: The effect of vector control strategy against dengue transmission between mosquitoes and human. Electron. J. Qual....
    • 14. Li, J.Q., Yang, Y.L., Zhou, Y.C.: Global stability of an epidemic model with latent stage and vaccination. Nonlinear Anal. Real World...
    • 15. Xiao, Y.N., Tang, S.Y.: Dynamics of infection with nonlinear incidence in a simple vaccination model. Nonlinear Anal. Real World Appl....
    • 16. Martcheva, M.: Introduction to Mathematical Epidemiology. Springer, New York (2015)
    • 17. Hoppensteadt, F.: An age-dependent epidemic model. J. Franklin Inst. 297(5), 325–338 (1974)
    • 18. Zou, L., Ruan, S.G., Zhang, W.N.: An age-structureed model for the transmission dynamics of Hepatitis B. SIAM J. Appl. Math. 70, 3121–3139...
    • 19. Zaman, G., Khan, A.: Dynamical aspects of an age-structured SIR endemic model. Comput. Math. Appl. 72, 1690–1702 (2016)
    • 20. Browne, C.J., Pilyugin, S.S.: Global analysis of age-structured within-host virus model. Discrete Contin. Dyn. Syst. Ser. B 18(8), 1999–2017...
    • 21. Cao, B., Huo, H.F., Xiang, H.: Global stability of an age-structure epidemic model with imperfect vaccination and relapse. Phys. A 486,...
    • 22. Duan, X.C., Yuan, S.L., Li, X.Z.: Global stability of an SVIR model with age of vaccination. Appl. Math. Comput. 226, 528–540 (2014)
    • 23. Li, Y.K., Teng, Z.D., Hu, C.: Global stability of an epidemic model with age-dependent vaccination, latent and relapse. Chaos Soliton....
    • 24. Liu, K.H., Lou, Y.J., Wu, J.H.: Analysis of an age structured model for tick populations subject to seasonal effects. J. Differ. Equ....
    • 25. Magal, P.: Compact attractors for time-periodic age-structured population models. Electron. J. Differ. Equ. 65, 1–35 (2001)
    • 26. Magal, P., Zhao, X.Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37(1), 251–275...
    • 27. Xu, R.: Global dynamics of an epidemiological model with age of infection and disease relapse. J. Biol. Dyn. 12(1), 118–145 (2018)
    • 28. Yang, J.Y., Chen, Y.M.: Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rate. J....
    • 29. Feng, W.J., Cai, L.M., Liu, K.H.: Dynamics of a dengue epidemics model with class-age structure. Int. J. Biomath. 8, 1–23 (2017)
    • 30. Wang, X., Chen, Y.M., Liu, S.Q.: Global dynamics of a vector-borne disease with infection ages and general incidence rates. Comput. Appl....
    • 31. Hale, L.K.: Functional Differential Equations. Springer, Berlin (1971)
    • 32. Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985)
    • 33. Hale, J.K., Waltman, P.: Persistence infinite-dimensional system. SIAM J. Math. Anal. 20(2), 388–395 (1989)
    • 34. Hirsch, W.M., Hanisch, H., Gabriel, J.P.: Differential equation models of some parasitic infections: methods for the study of asymptotic...
    • 35. Iannelli, M.: Mathematical Theory of Age-structured Population Dynamics. Applied Mathematics Monographs, Vol. 7. Giardini, Pisa: Comitato...
    • 36. Focks, D.A., Haile, D.G., Daniels, E.: Dynamics life table model for Aedes aegypti (Diptera:Culicidae): analysis of the literature and...
    • 37. Harrington, L.C., Buonaccorsi, J.P., Edman, J.D.: Analysis of survival of young and old Aedes aegypti (Diptera: Culicidae) from Puerto...
    • 38. Maciel-de-Freitas, R., Marques, W.A., Peres, R.C.: Variation in Aedes aegypti (Diptera: Culicidae) container productivity in a slum and...
    • 39. Magal, P., McCluskey, C.C., Webb, G.F.: Lyapunov functional and global asymptotic stability for an infection-age model. Appl. Anal. 89(7),...
    • 40. Melnik, A.V., Korobeinikov, A.: Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Math....
    • 41. Lu, M., Huang, J., Ruan, S., Yu, P.: Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno