Ir al contenido

Documat


Periodic Solutions for the Degenerate Lotka–Volterra Competition System

  • Huang Haochuan [1] ; Huang, Rui [2] ; Wang, Liangwei [3] ; Yin Jingxue [2]
    1. [1] Foshan University

      Foshan University

      China

    2. [2] South China Normal University

      South China Normal University

      China

    3. [3] Chongqing Three Gorges University

      Chongqing Three Gorges University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00409-x
  • Enlaces
  • Resumen
    • In this paper we consider periodic solutions for the degenerate Lotka–Volterra competition system. We use the iteration method and energy method to prove the existence of periodic solutions. Furthermore, we give some numerical simulations and explicit solutions to verify our theoretical results. As far as we know, there are no results about the periodic solutions for degenerate Lotka–Volterra competition system before the present work.

  • Referencias bibliográficas
    • 1. Ahmad, S., Lazer, A.C.: Asymptotic behaviour of solutions of periodic competition diffusion system. Nonlinear Anal. TMA 13, 263–284 (1989)
    • 2. Bögelein, V., Scheven, C.: Higher integrability in parabolic obstacle problems. Forum Math. 24(5), 931–972 (2012)
    • 3. Cosner, C., Lazer, A.C.: Stable coexistence states in the Volterra–Lotka competition model with diffusion. SIAM J. Appl. Math. 44(6), 1112–1132...
    • 4. Delgado, M., Suárez, A.: On the existence of dead cores for degenerate Lotka–Volterra models. Proc. R. Soc. Edinb. Sect. A. 130, 743–766...
    • 5. Delgado, M., Suárez, A.: On the structure of the positive solutions of the logistic equation with nonlinear diffusion. J. Math. Anal. Appl....
    • 6. Delgado, M., Suárez, A.: Stability and uniqueness for cooperative degenerate Lotka–Volterra model. Nonlinear Anal. TMA 49(6), 757–778 (2002)
    • 7. Ebmeyer, C., Liu, W.: Finite element approximation of the fast diffusion and the porous medium equations. SIAM J. Numer. Anal. 46, 2393–2410...
    • 8. Emmrich, E., Siska, D.: Full discretization of the porous medium/fast diffusion equation based on its very weak formulation. Commun. Math....
    • 9. Huang, H., Huang, R.: Asymptotic behavior of solutions for the Chafee-infante equation. Acta Math. Sci. 40, 425–441 (2020)
    • 10. Huang, H., Huang, R., Yin, J.: The supplementation of the theory of periodic solutions for a class of nonlinear diffusion equations. Appl....
    • 11. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods. Springer, New York (2011)
    • 12. Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1925)
    • 13. Murray, J.D.: Mathematical Biology, 3rd edn. Volume I (An Introduction) and Volume II (Spatial Models and Biomedical Applications). Springer,...
    • 14. Ngo, C., Huang, W.: A study on moving mesh finite element solution of the porous medium equation. J. Comput. Phys. 331, 357–380 (2017)
    • 15. Ni, W.M.: The Mathematics of Diffusion. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)
    • 16. Nica, M.: Eigenvalues and eigenfunctions of the Laplacian. Waterloo Math. Rev. 1(2), 23–34 (2011)
    • 17. Okubo, A., Levin, S.A.: Diffusion and Ecological Problems: Modern Perspectives. Springer, New York (2002)
    • 18. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992)
    • 19. Pao, C.V.: Global asymptotic stability of Lotka–Volterra competition systems with diffusion and time delays. Nonlinear Anal. TMA 5, 91–104...
    • 20. Pao, C.V.: A Lotka–Volterra cooperating reaction–diffusion system with degenerate density-dependent diffusion. Nonlinear Anal. 95, 460–467...
    • 21. Pao, C.V.: Dynamics of Lotka–Volterra competition reaction–diffusion systems with degenerate diffusion. J. Math. Anal. Appl. 421, 1721–1742...
    • 22. Schiesser, W.E., Griffiths, G.W.: A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge...
    • 23. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 53, 135–165 (1991)
    • 24. Sun, J., Zhang, D., Wu, B.: A two-species cooperative Lotka–Volterra system of degenerate parabolic equations. Abstr. Appl. Anal. (2011)....
    • 25. Tineo, A., Rivero, J.: Permanence and asymptotic stability for competitive and Lotka–Volterra systems with diffusion. Nonlinear Anal....
    • 26. Volterra, V.: Variazionie fluttuazioni del numero d’individui in specie animali conviventi. Mem. della R. Accademia dei Lincei Ser. VI...
    • 27. Wang, Y.M.: Global asymptotic stability of Lotka–Volterra competition, reaction-diffusion systems with time delays. Math. Comput. Model....
    • 28. Wang, Y., Yin, J.: Periodic solutions of a class of degenerate parabolic system with delays. J. Math. Anal. Appl. 380, 57–68 (2011)
    • 29. Wong, J.C.F.: The analysis of a finite element method for the three-species Lotka–Volterra competitiondiffusion with Dirichlet boundary...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno