Ir al contenido

Documat


Stochastic Differential Equations with Perturbations Driven by G-Brownian Motion

  • Ren, Yong [1] ; Sakthivel, R [2]
    1. [1] Anhui Normal University

      Anhui Normal University

      China

    2. [2] Bharathiar University

      Bharathiar University

      India

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00411-3
  • Enlaces
  • Resumen
    • In this study, we investigate asymptotic property of the solutions for a class of perturbed stochastic differential equations driven by G-Brownian motion (G-SDEs, in short) by proposing a perturbed G-SDE with small perturbation for the unperturbed G-SDE. We consider the closeness in the 2m-order moments of the solutions of perturbed G-SDEs and the unperturbed G-SDEs. At last, the obtained results are illustrated via a concrete example.

  • Referencias bibliográficas
    • 1. Bainov, D., Simeonov, P.: Integral inequalities and applications. Kluwer Academic Publishers, Dordrecht (1992)
    • 2. Denis, L., Hu, M., Peng, S.: Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion pathes....
    • 3. Fei, C., Fei, W., Yan, L.: Existence and stability of solutions to highly nonlinear stochastic differential delay equations driven by G-Brownian...
    • 4. Jasmina, D., Jankovi´c, S.: Reflected backward stochastic differential equations with perturbations. Discrete Contin. Dyn. Syst. 38, 1833–1848...
    • 5. Jasmina, D., Jankovi´c, S.: Backward stochastic Volterra integral equations with additive perturbations. Appl. Math. Comput. 265, 903–910...
    • 6. Jovanovi´c, M., Jankovi´c, S.: Neutral stochastic functional differential equations with additive perturbations. Appl. Math. Comput. 213,...
    • 7. Jovanovi´c, M., Jankovi´c, S.: On perturbed nonlinear Itô type stochastic integrodifferential equations. J. Math. Anal. Appl. 269, 301–316...
    • 8. Jovanovi´c, M., Jankovi´c, S.: Functionally perturbed stochastic differential equations. Math. Nachrihten 16, 1808–1822 (2006)
    • 9. Khasmnskii, R.: On stochastic processes defined by differential equations with a small parameter. Theory Prob. Appl. 11, 211–268 (1966)
    • 10. Lin, Y.: Stochastic differential equations driven by G-Brownian motion with reflecting boundary conditions. Electron. J. Probab. 18, 1–23...
    • 11. Peng, S.: G-Expectation, G-Brownian motion and related stochastic calculus of Itô type. Stochastic Analysis and Application 2. Abel Symposium,...
    • 12. Peng, S.: Nonlinear expectations and stochastic calculus under uncertainty with robust CLT and GBrownian motion, Probability Theory and...
    • 13. Ren, P., Yang, F.-F.: Path independence of additive functionals for stochastic differential equations under G-framework. Front. Math....
    • 14. Ren, Y., Wang, J., Hu, L.: Multi-valued stochastic differential equations driven by G-Brownian motion and related stochastic control problems....
    • 15. Ren, Y., Hu, L.: A note on the stochastic differential equations driven by G-Brownian motion. Statist. Probab. Lett. 81, 580–585 (2011)
    • 16. Ren, Y., Jia, X., Hu, L.: Exponential stability of solutions to impulsive stochastic differential equations driven by G-Brownian motion....
    • 17. Stoyanov, J., Botev, D.: Quantitative results for perturbed stochastic differential equations. J. Appl. Math. Stochast. Anal. 3, 255–261...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno