Ir al contenido

Documat


Applications of the Moser’s Twist Theorem to Some Impulsive Differential Equations

  • Chen, Lu [1]
    1. [1] Fudan University

      Fudan University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00413-1
  • Enlaces
  • Resumen
    • By KAM theorem, we prove that all solutions of Duffing equations of periodic coefficients undergoing suitable impulses are bounded for all time and that there are many quasi-periodic solutions clustering at infinity.

  • Referencias bibliográficas
    • 1. Moser, J.: On invariant curves of aera-preserving mapping of annulus. Nachr. Akad. Wiss. Gottingen Math. Phys. 2, 1–20 (1962)
    • 2. Moser, J.: Stable and Random Motion in Dynamic Systems, Annals of Mathematics Studies. Princeton University Press, Princeton (1973)
    • 3. Littlewood, J.: Some Problems in Real and Complex Analysis. Heath, Lexington (1968)
    • 4. Morris, G.: A case of boundedness of Littlewood’s problem on oscillatory differential equations. Bull. Aust. Math. Soc. 14, 71–93 (1976)
    • 5. Dieckerhoff, R., Zehnder, E.: Boundedness of solutions via the twist theorem. Ann. Sc. Norm. Super. Pisa 14(1), 79–95 (1987)
    • 6. Laederich, S., Levi, M.: Invariant curves and time-dependent potential. Ergod. Theory Dyn. Syst. 11, 365–378 (1991)
    • 7. Liu, B.: Boundedness for solutions of nonlinear Hill’s equations with periodic forcing terms via Moser’s twist theorem. J. Differ. Equ....
    • 8. Liu, B.: Boundedness for solutions of nonlinear periodic differential equations via Moser’s twist theorem. Acta Math. Sin. (N.S.) 8, 91–98...
    • 9. Wang, Y.: Unboundedness in a Duffing equation with polynomial potentials. J. Differ. Equ. 160(2), 467–479 (2000)
    • 10. Jiao, L., Piao, D., Wang, Y.: Boundedness for the general semilinear Duffing equations via the twist theorem. J. Differ. Equ. 252, 91–113...
    • 11. Peng, Y., Piao, D., Wang, Y.: Longtime closeness estimates for bounded and unbounded solutions of non-recurrent Duffing equations with...
    • 12. Yuan, X.: Invariant tori of Duffing-type equations. Adv. Math. (China) 24, 375–376 (1995)
    • 13. Yuan, X.: Invariant tori of Duffing-type equations. J. Differ. Equ. 142(2), 231–262 (1998)
    • 14. Yuan, X.: Lagrange stability for Duffing-type equations. J. Differ. Equ. 160(1), 94–117 (2000)
    • 15. Yuan, X.: Boundedness of solutions for Duffing equation with low regularity in time. Chin. Ann. Math. Ser. B 38(5), 1037–1046 (2017)
    • 16. Levi, M.: Quasiperiodic motions in superquadratic time periodic potentials. Commun. Math. Phys. 143(1), 43–83 (1991)
    • 17. Jiang, F., Shen, J., Zeng, Y.: Applications of the Poincare´–Birkhoff theorem to impulsive Duffing equations at resonance. Nonlinear Anal....
    • 18. Nieto, J., Uzal, J.: Positive periodic solutions for a first order singular ordinary differential equation generated by impulses. Qual....
    • 19. Nieto, J., Uzal, J.: Pulse positive periodic solutions for some classes of singular nonlinearities. Appl. Math. Lett. 86, 134–140 (2018)
    • 20. Wang, C., Yang, X., Chen, X.: Affine-periodic solutions for impulsive differential systems. Qual. Theory Dyn. Syst. 19, 1–22 (2020)
    • 21. Qian, D., Chen, L., Sun, X.: Periodic solutions of superlinear impulsive differential equations: a geometric approach. J. Differ. Equ....
    • 22. Akhmet, M.: Principles of Discontinuous Dynamical Systems. Springer, New York (2010)
    • 23. Dong, Y.: Sublinear impulse effects and solvability of boundary value problems for differential equations with impulses. J. Math. Anal....
    • 24. Lakshmikantham, V., Bainov, D., Simeonov, P.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
    • 25. Nieto, J.: Basic theory for nonresonace impulsive periodic problems of first order. J. Math. Anal. Appl. 205, 423–433 (1997)
    • 26. Nieto, J., O’Regan, D.: Variational approach to impulsive differential equations. Nonlinear Anal. Real World Appl. 10, 680–690 (2009)
    • 27. Sun, J., Chen, H., Nieto, J.: Infinitely many solutions for second-order Hamiltonian system with impulsive effects. Math. Comput. Model....
    • 28. Niu, Y., Li, X.: Boundedness of solutions in impulsive Duffing equations with polynomial potentials and C1 time dependent coefficients...
    • 29. Shen, J., Chen, L., Yuan, X.: Lagrange stability for impulsive Duffing equations. J. Differ. Equ. 266, 6924–6962 (2019)
    • 30. Niu, Y., Li, X.: An application of Moser’s twist theorem to superlinear impulsive differential equations. Discrete Contin. Dyn. Syst....
    • 31. Russman, H.: Uber invariante Kurven differenzierbarer Abbildungen eines Kreisringes. Nachr. Akad. Wiss. Gottingen Math. Phys. 2, 67–105...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno