Ir al contenido

Documat


Morse Index and Stability of the Planar N-vortex Problem

  • Hu Xijun [1] ; Portaluri Alessandro [2] ; Xing Qin [1]
    1. [1] Shandong University

      Shandong University

      China

    2. [2] University of Turin

      University of Turin

      Torino, Italia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00410-4
  • Enlaces
  • Resumen
    • This paper concerns the investigation of the stability properties of relative equilibria which are rigidly rotating vortex configurations sometimes called vortex crystals, in the N-vortex problem. Such a configurations can be characterized as critical point of the Hamiltonian function restricted on the constant angular impulse hyper-surface in the phase space (topologically a pseudo-sphere whose coefficients are the circulation strengths of the vortices). Relative equilibria are generated by the circle action on the so-called shape pseudo-sphere (which generalize the standard shape sphere appearing in the study of the N-body problem). Inspired by the planar N-body problem, and after a geometrical and dynamical discussion of the problem, we investigate the relation intertwining the stability of relative equilibria and the inertia indices of the central configurations generating such equilibria. In the last section we applied our main results to some symmetric three and four vortices relative equilibria.

  • Referencias bibliográficas
    • 1. von Helmholtz, H.: Über integrale der hydrodynamischen Gleichungen, welcheden Wirbelbewegungen entsprechen. J. Math. Bd. LV. Heft 1, 4...
    • 2. Routh, E.J.: Some applications of conjugate functions. Proc. Lond. Math. Soc. 1(1), 73–89 (1880)
    • 3. Lim, C.C.: On the Motion of Vortices in Two Dimensions. University of Toronto Press, Toronto (1943)
    • 4. Newton, P.K.: The N-vortex Problem. Analytical Techniques. Applied Mathematical Sciences, vol. 145. Springer, New York (2001)
    • 5. Hu, X., Long, Y., Sun, S.: Linear stability of elliptic Lagrangian solutions of the planar three-body problem via index theory. Arch. Ration....
    • 6. Barutello, V., Jadanza, R.D., Portaluri, A.: Morse index and linear stability of the Lagrangian circular orbit in a three-body-type problem...
    • 7. Roberts, G.E.: Stability of relative equilibria in the planar N-vortex problem. SIAM J. Appl. Dyn. Syst. 12, 1114–1134 (2013)
    • 8. Roberts, G.E.: Morse theory and relative equilibria in the planar n-vortex problem. Arch. Ration. Mech. Anal. 228(1), 209–236 (2018)
    • 9. Synge, J.L.: On the motion of three vortices. Can. J. Math. 1, 257–270 (1949)
    • 10. Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)
    • 11. Gohberg, I., Lancaster, P., Rodman, L.I.: Linear Algebra and Applications. Birkhäuser Verlag, Basel (2005)
    • 12. Palmore, J.: Relative equilibria of vortices in two dimensions. Proc. Natl. Acad. Sci. USA 79, 716–718 (1982)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno