Ir al contenido

Documat


Some Qualitative Features of the Isosceles Trapezoidal Four-Body Problem

  • Alvarez-Ramírez, Martha [1] ; Medina, Mario [1]
    1. [1] UAM-Iztapalapa
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 1, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00342-z
  • Enlaces
  • Resumen
    • In this article, we present a novel survey of known qualitative features of the isosceles trapezoidal four-body problem, that has three degrees of freedom, as well as its two subsystems with two degrees of freedom, namely, the symmetric collinear four-body problem and the rectangular four-body problem. We use the configurations space to display the “full picture” that allows us to visualize all admissible configurations on the reduced space, homeomorphic to a three-sphere, called the shape sphere.

  • Referencias bibliográficas
    • 1. Alvarez-Ramírez, M., Medina, M., Vidal, C.: The trapezoidal collinear four-body problem. Astrophys. Space Sci. 17, 358 (2015). https://doi.org/10.1007/s10509-015-2416-2
    • 2. Alvarez-Ramírez, M., Barrabés, E., Medina, M., Ollé, M.: Ejection-Collision orbits in the symmetric collinear four-body problem. Commun....
    • 3. Chen, K.C.: Action minimizing orbits in the parallelogram four-body problem with equal masses. Arch. Ration. Mech. Anal. 158(4), 293–318...
    • 4. Devaney, R.L.: Singularities in classical mechanical systems. In: Katok, A. (ed.) Ergodic Theory and Dynamical Systems I. Progress in Mathematics,...
    • 5. Lacomba, E.: Quadruple collision in the trapezofdal 4-body problem. In: Devaney, R., Nitecki, Z. (eds.) Classical Mechanics and Dynamical...
    • 6. Lacomba, E.A.: Movements voisions dans collision quadruple dans le probleme trapezoidal des 4 corps. Celest. Mech. 31, 23–41 (1983)
    • 7. Lacomba, E.A., Medina, M.: Symbolic dynamics in the symmetric collinear four-body problem. Qual. Theory Dyn. Syst. 5(1), 75–100 (2004)
    • 8. Lacomba, E.A.,Medina,M.: Oscillatory motions in the rectangular four body problem. Discrete Contin. Dyn. Syst. S 1(4), 557–587 (2008)
    • 9. McGehee, R.: Triple collision in the collinear three body problem. Invent. Math. 27, 191–227 (1974)
    • 10. Moeckel, R.: Some qualitative features of the three-body problem. Contemp. Math. 81, 1–22 (1988)
    • 11. Montgomery, R.: The three body problem and the shape sphere. Am. Math. Mon. 122(4), 299–321 (2015)
    • 12. Sekiguchi, M., Tanikawa, K.: On the symmetric collinear four-body problem. Publ. Astron. Soc. Jpn. 56(235–251), 25 (2004)
    • 13. Simó, C., Lacomba, E.: Analysis of some degenerate quadruple collisions. Celest. Mech. 28, 49–62 (1982)
    • 14. Simó, C., Lacomba, E.A.: Regularization of simultaneous binary collisions in the n-body problem. J. Differ. Equ. 98, 241–259 (1992)
    • 15. Sweatman, W.L.: A family of symmetrical Schubart-like interplay orbits and their stability in the one-dimensional four-body problem. Celest....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno