Ir al contenido

Documat


Eventually Shadowable Points

  • Dong Meihua [1] ; Jung Woochul [2] ; Morales, Carlos [3]
    1. [1] Yanbian University

      Yanbian University

      China

    2. [2] Chungnam National University

      Chungnam National University

      Corea del Sur

    3. [3] Universidade Federal do Rio de Janeiro

      Universidade Federal do Rio de Janeiro

      Brasil

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 1, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00367-4
  • Enlaces
  • Resumen
    • We study the eventually shadowable points namely points for which every pseudo orbit passing through then can be eventually shadowed (Good and Meddaugh in Ergod Theory Dyn Syst 38(1):143–154, 2018). We will prove the following results: the set of eventually shadowable points of a surjective continuous map of a compact metric space is invariant (possibly empty or noncompact) and the map has the eventual shadowing property if and only if every point is eventually shadowable. The chain recurrent and nonwandering sets coincide when every chain recurrent point is eventually shadowable. A surjective continuous map of a compact metric space has the eventual shadowing property if and only if the set of eventually shadowable points has a full measure with respect to every ergodic invariant probability measure. If there is an eventually shadowable point for which the associated Li–Yorke set equals the whole space, then the map has the eventual shadowing property. Proximal or transitive maps with eventually shadowable points have the eventual shadowing property. The eventually shadowable and shadowable points coincide for surjective equicontinuous maps on compact metric spaces. In particular, a surjective equicontinuous map of a compact metric space has the eventual shadowing property if and only if it has the shadowing property.

  • Referencias bibliográficas
    • 1. Auslander, J.: Minimal flows and their extensions. North-Holland Mathematics Studies, vol. 153. North-Holland, Amsterdam (1988)
    • 2. Blanchard, F., Glasner, E., Kolyada, S., Maass, A.: On Li–Yorke pairs. J. Reine Angew. Math. 547, 51–68 (2002)
    • 3. Boro ´nski, J.P., Kupka, J., Oprocha, P.: A mixing completely scrambled system exists. Ergod. Theory Dyn. Syst. 39(1), 62–73 (2019)
    • 4. Bowen, R.: ω-limit sets for axiom A diffeomorphisms. J. Differ. Equ. 18(2), 333–339 (1975)
    • 5. Brian, W.R., Meddaugh, J., Raines, B.E.: Chain transitivity and variations of the shadowing property. Ergod. Theory Dyn. Syst. 35(7), 2044–2052...
    • 6. Dastjerdi, D.A., Hosseini, M.: Sub-shadowings. Nonlinear Anal. 72(9–10), 3759–3766 (2010)
    • 7. Edrei, A.: On mappings which do not increase small distances. Proc. Lond. Math. Soc. 2(3), 272–278 (1952)
    • 8. Fakhari, A., Ghane, F.H.: On shadowing: ordinary and ergodic. J. Math. Anal. Appl. 364(1), 151–155 (2010)
    • 9. Good, C., Meddaugh, J.: Orbital shadowing, internal chain transitivity and ω-limit sets. Ergod. Theory Dyn. Syst. 38(1), 143–154 (2018)
    • 10. Kawaguchi, N.: Quantitative shadowable points. Dyn. Syst. 32, 504–518 (2017)
    • 11. Li, M.-J.: Pointwise pseudo-orbit tracing property and its application. J. Math. Res. Expos. 25(1), 23–30 (2005)
    • 12. Morales, C.A.: Shadowable points. Dyn. Syst. 31, 347–356 (2016)
    • 13. Oprocha, P.: Shadowing, thick sets and the Ramsey property. Ergod. Theory Dyn. Syst. 36(5), 1582– 1595 (2016)
    • 14. Pilyugin, S.-Yu.: Shadowing in Dynamical Systems. Lecture Notes in Mathematics, 1706. Springer, Berlin (1999)
    • 15. Wang, Q., Yang, R.S.: Pointwise pseudo-orbit tracing property and chaos. J. Math. Res. Expos. 28(2), 413–420 (2008)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno