Ir al contenido

Documat


On the Study and Application of Limit Cycles of a Kind of Piecewise Smooth Equation

  • Jin Yuye [1] ; Huang, Jianfeng [1]
    1. [1] Jinan University

      Jinan University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 1, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00358-5
  • Enlaces
  • Resumen
    • In this paper we devote to study the piecewise smooth equation of the form: dxdt=S(t,x)=S1(t,x)=a1(t)xm+b(t),ifx≥0,S2(t,x)=a2(t)xm+b(t),ifx<0,where (t,x)∈[0,2π]×R,m∈Z+ and a1(t),a2(t),b(t) are 2π-periodic smooth functions. A solution of the equation satisfying x(0)=x(2π) is called a periodic solution. Moreover, such solution is called a limit cycle if and only if it is isolated. We obtain that the maximum number of limit cycles for this equation is 1 (resp. 2) if (-1)ma1(t)·a2(t)<0 (resp. (-1)ma1(t)·a2(t)>0). In this study we pay more attention to the examples in which the equation has limit cycle(s) crossing the separation straight line x=0. In the end, we apply this result on a kind of piecewise smooth planar system which has a separation curve x2+y2=1.

  • Referencias bibliográficas
    • 1. Buzzi, C., Pessoa, C., Torregrosa, J.: Piecewise linear perturbation of a linear center. Discrete Contin. Dyn. Syst. 33(9), 3915–3936 (2013)
    • 2. Han, M., Zhang, W.: On Hopf bifurcation in non-smooth planar systems. J. Differ. Equ. 248(9), 2399– 2416 (2010)
    • 3. Huan, S., Yang, X.: On the number of limit cycles in general planar piecewise linear systems. Discrete Contin. Dyn. Syst. 32(6), 2147–2164...
    • 4. Cardin, P.T., Torregrosa, J.: Limit cycles in planar piecewise linear differential systems with nonregular separation line. Phys. D 337,...
    • 5. Freire, E., Ponce, E., Torres, F.: The discontinuous matching of two planar linear foci can have three nested crossing limit cycles. Publ....
    • 6. Euzébio, R.D., Llibre, J.: On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated...
    • 7. Llibre, J., Novaes, D.D., Teixeira, M.A.: Limit cycles bifurcating from the periodic orbits of a discontinuous piecewise linear differential...
    • 8. Llibre, J., Novaes, D.D., Teixeira, M.A.: Maximum number of limit cycles for certain piecewise linear dynamical systems. Nonlinear Dyn....
    • 9. Li, S., Cen, X., Zhao, Y.: Bifurcation of limit cycles by perturbing piecewise smooth integrable nonHamiltonian systems. Nonlinear Anal....
    • 10. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Osciallators (Pergramon Press, Oxford, New York (1966), Translated from the Russian...
    • 11. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic, Amsterdam (1988)
    • 12. Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Picewise-Smooth Dynamical Systems: Theory and Applications, Applied Mathematical...
    • 13. Freire, E., Ponce, E., Rodrigo, F., Torres, F.: Bifurcation sets of continuous piecewise linear systems with two zones. Int. J. Bifurc....
    • 14. Llibre, J., Ordóñez, M., Ponce, E.: On the existence and uniqueness of limit cycles in a planar piecewise linear systems without symmetry....
    • 15. Lins-neto, A.: On the number of solution of the equation dx dt = n j=0 a j(t)x j, 0 ≤ t ≤ 1 for with x(0) = x(1). Invent....
    • 16. Devlin, J., Lloyd, N.G., Pearson, J.M.: Cubic systems and Abel equations. J. Differ. Equ. 147, 435–454 (1998)
    • 17. Gasull, A., Llibre, J.: Limit cycles for a class of Abel equation. SIAM J. Math. Anal. 21, 1235–1244 (1990)
    • 18. Álvarez, M.J., Bravo, J.L., Fernández, M.: Existence of non-trivial limit cycles in Abel equations with symmetries. Nonlinear Anal. Theor....
    • 19. Álvarez, M.J., Gasull, A., Giacomini, H.: A new uniqueness criterion for the number of periodic orbits of Abel equations. J. Differ. Equ....
    • 20. Benterki, R., Llibre, J.: Limit cycles of polynomial differential equations with quintic homogeneous nonlinearities. J. Math. Anal. Appl....
    • 21. Bravo, J.L., Fernández, M., Gasull, A.: Limit cycles for some Abel equations having coefficients without fixed signs. Int. J. Bifurc....
    • 22. Huang, J., Zhao, Y.: Periodic solutions for equation x˙ = A(t)xm + B(t)xn + C(t)xl with A(t) and B(t) changing signs. J. Differ....
    • 23. Álvarez, A., Bravo, J.L., Fernández, M.: The number of limit cycles for generalilized Abel equations with periodic coefficients of definited...
    • 24. Carmona, V., Freire, E., Ponce, E., Torres, F.: Invariant manifolds of periodic orbits for piecewise linear three-dimensional systems....
    • 25. Coll, B., Gasull, A., Prohens, R.: Simple non-autonomous differential equations with many limit cycle. Commun. Appl. Nonlinear Anal. 15,...
    • 26. Mawhin, J.: First order ordinary differential equations with several periodic solutions. J. Appl. Math. Phys. 38, 257–265 (1987)
    • 27. Llibre, J., Teruel, A.E.: Introduction to the Qualitative Theory of Differential Systems (Mathematics Subject Classification), pp. 61–180....
    • 28. Lloyd, N.G.: A note on the number of limit cycles in certain two-dimensional systems. J. Lond. Math. Soc. 20, 277–286 (1979)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno