Ir al contenido

Documat


Existence of Solitary Wave Solutions for a Nonlinear Fifth-Order KdV Equation

  • Li, Xiaofeng [1] ; Du Zengji [1] ; Liu, Jiang [1]
    1. [1] Jiangsu Normal University

      Jiangsu Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 1, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00366-5
  • Enlaces
  • Resumen
    • In this paper, we study a nonlinear fifth-order KdV equation which has wide physical applications. We first establish the existence of solitary wave solutions for this equation without delay by using the Hamilton function method. Then we obtain the desired homoclinic orbits by constructing a locally invariant manifold. Finally we obtain the existence of solitary wave solutions for this equation with local and nonlocal delay convolution kernels by using the geometric singular perturbation analysis, implicit function theorem and Fredholm theory.

  • Referencias bibliográficas
    • 1. Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, Cambridge (2000)
    • 2. Xu, Y., Du, Z.: Existence of traveling wave fronts for a generalized KdV–mKdV equation. Math. Model. Anal. 19, 509–523 (2014)
    • 3. Xu, Y., Du, Z., Wei, L.: Geometric singular perturbation method to the existence and asymptotic behavior of traveling waves for a generalized...
    • 4. Mansour, M.B.A.: A geometric construction of traveling waves in a generalized nonlinear dispersive– dissipative equation. J. Geom. Phys....
    • 5. Shang, X., Du, Z.: Existence of traveling waves in a generalized nonlinear dispersive–dissipative equation. Math. Methods Appl. Sci. 39,...
    • 6. Chun, C.: Solitons and periodic solutions for the fifth-order KdV equation with the Exp-function method. Phys. Lett. A 372, 2760–2766 (2008)
    • 7. Kwak, C.: Local well-posedness for the fifth-order KdV equations on T. J. Differ. Equ. 260, 7683–7737 (2016)
    • 8. Kwon, S.: On the fifth-order KdV equation: local well-posedness and lack of uniform continuity of the solution map. J. Differ. Equ. 245,...
    • 9. Guo, Z., Kwak, C., Kwon, S.: Rough solutions of the fifth-order KdV equations. J. Funct. Anal. 265, 2791–2829 (2013)
    • 10. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)
    • 11. Jones, C.K.R.T.: Geometrical singular perturbation theory. In: Johnson, R. (ed.) Dynamical Systems, Lecture Notes in Mathematics, vol....
    • 12. Coll, B., Dumortier, F., Prohens, R.: Configurations of limit cycles in Lie´nard equations. J. Differ. Equ. 255, 4169–4184 (2013)
    • 13. Hek, G.: Geometric singular perturbation theory in biological practice. J. Math. Biol. 60, 347–386 (2010)
    • 14. Du, Z., Feng, Z.: Existence and asymptotic behavior of traveling waves in a modified vector-disease model. Commun. Pure Appl. Anal. 17(5),...
    • 15. Liu, J., Xu, D., Du, Z.: Traveling wave solution of a reaction–diffusion predator–prey system. Qual. Theory Dyn. Syst. 18, 57–67 (2019)
    • 16. Chen, A., Guo, L.N., Deng, X.: Existence of solitary waves and periodic waves for a perturbed generalized BBM equations. J. Differ. Equ....
    • 17. Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa–Holm via a geometric approach. J. Funct. Anal. 275,...
    • 18. Wang, C., Zhang, X.: Stability loss delay and smoothness of the return map in slow-fast systems. SIAM J. Appl. Dyn. Syst. 17, 788–822...
    • 19. Ge, J., Du, Z.: The solitary wave solutions of the nonlinear perturbed shallow water wave model. Appl. Math. Lett. 103, 106202 (2020)....
    • 20. Lin, G., Li, W.: Bistable wavefronts in a diffusive and competitive Lotka–Volterra type system with nonlocal delays. J. Differ. Equ. 244,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno