Ir al contenido

Documat


The Role of the Saddle-Foci on the Structure of a Bykov Attracting Set

  • Bessa Mário [1] ; Carvalho, Maria [2] ; Rodrigues Alexandre A P [2]
    1. [1] Universidade da Beira Interior

      Universidade da Beira Interior

      Covilhã (Conceição), Portugal

    2. [2] Universidade Do Porto

      Universidade Do Porto

      Santo Ildefonso, Portugal

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 1, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00373-6
  • Enlaces
  • Resumen
    • We consider a one-parameter family (fλ)λ⩾0 of symmetric vector fields on the three-dimensional sphere whose flows exhibit a heteroclinic network between two saddle-foci inside a global attracting set. More precisely, when λ=0, there is an attracting heteroclinic cycle between the two equilibria which is made of two 1-dimensional connections together with a 2-dimensional sphere which is both the stable manifold of one saddle-focus and the unstable manifold of the other. After slightly increasing the parameter while keeping the 1-dimensional connections unaltered, the two-dimensional invariant manifolds of the equilibria become transversal, and thereby create homoclinic and heteroclinic tangles. It is known that these newborn structures are the source of a countable union of topological horseshoes, which prompt the coexistence of infinitely many sinks and saddle-type invariant sets for many values of λ. We show that, for every small enough positive parameter λ, the stable and unstable manifolds of the saddle-foci and those infinitely many horseshoes are contained in the global attracting set of fλ; moreover, the horseshoes belong to the heteroclinic class of the equilibria. In addition, we show that the set of chain-accessible points from either of the saddle-foci is chain-stable and contains the closure of the invariant manifolds of the two equilibria.

  • Referencias bibliográficas
    • 1. Afraimovich, V.S., Shilnikov, L.P.: Strange attractors and quasiattractors. In: Barenblatt, G.I., Iooss, G., Joseph, D.D. (eds.) Nonlinear...
    • 2. Aguiar, M.A.D., Castro, S.B.S.D., Labouriau, I.S.: Dynamics near a heteroclinic network. Nonlinearity 18, 391–414 (2005)
    • 3. Block, L., Franke, J.E.: The chain recurrent set, attractors and explosions. Ergod. Theory Dyn. Syst. 5, 321–327 (1985)
    • 4. Broer, H.W., Vegter, G.: Subordinate Shilnikov bifurcations near some singularities of vector fields having low codimension. Ergod. Theory...
    • 5. Bykov, V.V.: Orbit structure in a neighborhood of a separatrix cycle containing two saddle-foci. Am. Math. Soc. Transl. 200, 87–97 (2000)
    • 6. Champney, A.R., Kirk, V., Knobloch, E., Oldeman, B.E., Rademacher, J.D.M.: Unfolding a tangent equilibrium-to-periodic heteroclinic cycle....
    • 7. Chillingworth, D.R.J.: Generic multiparameter bifurcation from a manifold. Dyn. Stab. Syst. 15(2), 101–137 (2000)
    • 8. Crovisier, S.: Saddle-node bifurcations for hyperbolic sets. Ergod. Theory Dyn. Syst. 22, 1079–1115 (2002)
    • 9. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences,...
    • 10. Guckenheimer, J., Worfolk, P.: Instant chaos. Nonlinearity 5, 1211–1222 (1991)
    • 11. Hirsch, M.W., Smith, H.L., Zhao, X.-Q.: Chain transitivity, attractivity and strong repellors for semidynamical systems. J. Dyn. Diff....
    • 12. Krupa, M., Melbourne, I.: Asymptotic stability of heteroclinic cycles in systems with symmetry. Ergod. Theory Dyn. Syst. 15(1), 121–147...
    • 13. Labouriau, I.S., Rodrigues, A.A.P.: Global generic dynamics close to symmetry. J. Diff. Eqs. 253(8), 2527–2557 (2012)
    • 14. Labouriau, I.S., Rodrigues, A.A.P.: Dense heteroclinic tangencies near a Bykov cycle. J. Diff. Eqs. 259(12), 5875–5902 (2015)
    • 15. Labouriau, I.S., Rodrigues, A.A.P.: Global bifurcations close to symmetry. J. Math. Anal. Appl. 444(1), 648–671 (2016)
    • 16. Palis, J., Takens, F.: Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations: Fractal Dimensions and Infinitely Many...
    • 17. Rodrigues, A.A.P.: Repelling dynamics near a Bykov cycle. J. Dyn. Diff. Eqs. 25(3), 605–625 (2013)
    • 18. Rodrigues, A.A.P., Labouriau, I.S.: Spiralling dynamics near heteroclinic networks. Physica D 268, 34–49 (2014)
    • 19. Wiggins, S.: Global Bifurcations and Chaos. Analytical Methods. Applied Mathematical Sciences, vol. 73. Springer, New York (1988)
    • 20. Yorke, J.A., Alligood, K.T.: Cascades of period-doubling bifurcations: a prerequisite for horseshoes. Bull. Am. Math. Soc. (N.S.) 9(3),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno