Ir al contenido

Documat


Invariant Manifolds in the Hamiltonian–Hopf Bifurcation

  • Meyer, Kenneth R [1] ; Schmidt, Dieter S [1]
    1. [1] University of Cincinnati

      University of Cincinnati

      City of Cincinnati, Estados Unidos

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 1, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00376-3
  • Enlaces
  • Resumen
    • We study the evolution of the stable and unstable manifolds of an equilibrium point of a Hamiltonian system of two degrees of freedom which depends on a parameter ν. The eigenvalues of the linearized system are pure imaginary for ν<0 and complex with nonzero real part for ν>0 (these are the same basic assumptions as found in the Hamiltonian–Hopf bifurcation theorem of the authors). For ν>0 the equilibrium has a two-dimensional stable manifold and a two-dimensional unstable manifold, but for ν<0 there are no longer stable and unstable manifolds attached to the equilibrium. We study the evolution of these manifolds as the parameter is varied. If the sign of a certain term in the normal form is positive then for small positive ν the stable and unstable manifolds of the system are either identical or must have transverse intersection. Thus, either the system is totally degenerate or the system admits a suspended Smale horseshoe as an invariant set. This happens at the Lagrange equilibrium point L4 of the restricted three-body problem at the Routh critical value μ1. On the other hand if the sign of this term in the normal form is negative then for ν=0 the stable and unstable manifolds persists and then as ν decreases from zero they detach from the equilibrium to follow a hyperbolic periodic solution.

  • Referencias bibliográficas
    • 1. Deprit, A., Henrard, J.: A manifold of periodic solutions. Adv. Astron. Astrophys. 6, 6–124 (1968)
    • 2. Franks, J.: Manifolds of Cr mappings and applications to differential dynamical systems. Stud. Anal. Adv. Math. Suppl. Ser. 4, 271–291...
    • 3. Gaivão, J.P.: Exponentially Small Splitting of Invariant Manifolds near a Hamiltonian-Hopf Bifurcation, Thesis. University of Warwick (2010)
    • 4. Gaivão, J.P.: Analytic invariants for the 1:-1 resonance. Annales de L’Institut Fourier 63(4), 1367–1426 (2013)
    • 5. Gaivão, J.P., Gelfreich, V.: Splitting of separatrices for the Hamiltonian–Hopf bifurcation with the Swift–Hohenberg equation as an example....
    • 6. Hale, J.K.: Ordinary Differential Equations. Wiley, New York (1972)
    • 7. Hartman, P.: Ordinary Differential Equations. Birkhäuser, Boston (1982)
    • 8. Iooss, G., Peroueme, M.C.: Perturbed homoclinic solutions in reversible 1:1 resonance vector fields. J. Differ. Equ. 102, 62–88 (1993)
    • 9. Lypounoff, A.: Problem général de la stablité du mouvement. Ann. Math. Studies 17. Princeton University Press, Princeton, NJ (1947)
    • 10. McSwiggen, P.D., Meyer, K.R.: The evolution of invariant manifolds in the Hamiltonian–Hopf bifurcation. J. Differ. Equ. 189, 538–555 (2003)
    • 11. Meyer, K.R., Offin, D.C.: Introduction to Hamiltonian Dynamical Systems and the N-body Problem, 3rd edn. Springer, New York (2017)
    • 12. Meyer, K.R., Schmidt, D.S.: Periodic orbits near L4 for mass ratios near the critical mass ratio of Routh. Celest. Mech. 4, 99–109 (1971)
    • 13. Meyer, K.R., Palacián, J.F., Yanguas, P.: Stability of a Hamiltonian system in a limiting case. Regul. Chaot. Dyn. 17(1), 24–35 (2012)
    • 14. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, Boca Raton (1995)
    • 15. van Gils, S., Krupa, M., Langford, W.: Hopf bifurcation with nonsemi-simple 1:1 resonance. Nonlinearity 3, 825–850 (1990)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno