Ir al contenido

Documat


A Simple Family of Exceptional Maps with Chaotic Behavior

    1. [1] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

    2. [2] Universitat de Barcelona

      Universitat de Barcelona

      Barcelona, España

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 1, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00361-w
  • Enlaces
  • Resumen
    • A simple family of maps in T2 is considered in this note. It displays chaos in the sense that the dynamics has sensitive dependence to initial conditions and topological transitivity. Furthermore the set of points displaying chaotic behavior has full Lebesgue measure in T2. However the maps have neither homoclinic nor heteroclinic orbits and have a single fixed point which is parabolic, with an unstable branch and a stable one. The role of returning infinitely many times near the fixed point is taken by quasi-periodicity. The maximal Lyapunov exponent is zero. This family was presented as a one-page example in Garrido and Simó (Some ideas about strange attractors. Dynamical systems and chaos (Sitges/Barcelona, 1982). Lecture notes in physics, Springer, Berlin, 1983) (section 2.8). Later we present generalizations and variants.

  • Referencias bibliográficas
    • 1. Aulbach, B., Kieninger, B.: On three definitions of chaos. Nonlinear Dyn. Syst. Theory 1, 23–37 (2001)
    • 2. Craig, S., Diacu, F., Lacomba, E., Pérez, E.: On the anisotropic Manev problem. J. Math. Phys. 40, 1359–1375 (1999)
    • 3. Danforth, C.M.: Chaos in an atmosphere hanging on a wall. Mathematics of Planet Earth. http://mpe. dimacs.rutgers.edu/2013/03/17/chaos-in-an-atmosphere-hanging-on-a-wall/...
    • 4. Delgado, J., Diacu, F., Lacomba, E., Mingarelli, A., Mioc, V., Pérez, E., Stoica, C.: The global flow of the Manev problem. J. Math. Phys....
    • 5. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. The Benjamin/Cummings Publishing Co., Inc, Menlo Park (1985). xiv+320 pp
    • 6. Diacu, F., Holmes, P.: Celestial Encounters. The Origin of Chaos and Stability, p. xviii+234. Princeton University Press, Princeton...
    • 7. Diacu, F., Mingarelli, A., Mioc, V., Stoica, C.: The Manev Two-Body Problem: Quantitative and Qualitative Theory Dynamical Systems and...
    • 8. Diacu, F., Mioc, V., Stoica, C.: Phase-space structure and regularization of Manev-type problems. Nonlinear Anal. 41, 1029–1055 (2000)
    • 9. Diacu, F., Santoprete, M.: Nonintegrability and chaos in the anisotropic Manev problem. Physica D 156, 39–52 (2001)
    • 10. Diacu, F., Santoprete, M.: On the global dynamics of the anisotropic Manev problem. Physica D 194, 75–94 (2004)
    • 11. Garrido, L., Simó, C.: Some Ideas About Strange Attractors. Dynamical Systems and Chaos (Sitges/Barcelona, 1982). Lecture Notes in Physics,...
    • 12. Poincaré, J.H.: Les méthodes nouvelles de la mécanique celeste. Gauthier-Villars, Paris (1892–1899)
    • 13. Sander, E., Yorke, J.A.: The many facets of chaos. Int. J. Bifurcat. Chaos 25, 1530011-1-15 (2013)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno