Ir al contenido

Documat


Periodic Orbits of Linear Filippov Systems with a Line of Discontinuity

  • Li, Tao [1] ; Chen, Xingwu [1]
    1. [1] Sichuan University

      Sichuan University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 1, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00384-3
  • Enlaces
  • Resumen
    • In this paper we consider periodic orbits of planar linear Filippov systems with a line of discontinuity. Unlike many publications researching only the maximum number of crossing periodic orbits, we investigate not only the number and configuration of sliding periodic orbits, but also the coexistence of sliding periodic orbits and crossing ones. Firstly, we prove that the number of sliding periodic orbits is at most 2, and give all possible configurations of one or two sliding periodic orbits. Secondly, we prove that two sliding periodic orbits coexist with at most one crossing periodic orbit, and one sliding periodic orbit can coexist with two crossing ones.

  • Referencias bibliográficas
    • 1. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Pergamon Press, Oxford (1966)
    • 2. Bilharz, H.: Über eine gesteuerte eindimensionale Bewegung. Z. Angew. Math. Mech. 22, 206–215 (1942)
    • 3. Braga, D.C., Mello, L.F.: Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane....
    • 4. Buzzi, C., Pessoa, C., Torregrosa, J.: Piecewise linear perturbations of a linear center. Discrete Contin. Dyn. Syst. 9, 3915–3936 (2013)
    • 5. Chen, H., Llibre, J., Tang, Y.: Global dynamics of a SD oscillator. Nonlinear Dyn. 91, 1755–1777 (2018)
    • 6. Colombo, A., Lamiani, P., Benadero, L., di Bernardo, M.: Two-parameter bifurcation analysis of the buck converter. SIAM J. Appl. Dyn. Syst....
    • 7. di Bernardo, M., Budd, C.J., Champneys, A.R.: Grazing, skipping and sliding: analysis of the nonsmooth dynamics of the DC/DC buck converter....
    • 8. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications, Applied Mathematical...
    • 9. Filippov, A.F.: Differential Equation with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht (1988)
    • 10. Freire, E., Ponce, E., Torres, F.: Canonical discontinuous planar piecewise linear systems. SIAM J. Appl. Dyn. Syst. 11, 181–211 (2012)
    • 11. Freire, E., Ponce, E., Torres, F.: A general mechanism to generate three limit cycles in planar Filippov systems with two zones. Nonlinear...
    • 12. Freire, E., Ponce, E., Torres, F.: The discontinuous matching of two planar linear foci can have three nested crossing limit cycles. Publ....
    • 13. Freire, E., Ponce, E., Torres, F.: On the critical crossing cycle bifurcation in planar Filippov systems. J. Differ. Equ. 259, 7086–7107...
    • 14. Giannakopoulos, F., Pliete, K.: Planar systems of piecewise linear differential equations with a line of discontinuity. Nonlinearity 14,...
    • 15. Giannakopoulos, F., Pliete, K.: Closed trajectories in planar relay feedback systems. Dyn. Syst. 17, 343–358 (2002)
    • 16. Guardia, M., Seara, T.M., Teixeira, M.A.: Generic bifurcations of low codimension of planar Filippov systems. J. Differ. Equ. 250, 1967–2023...
    • 17. Hale, J.K.: Ordinary Differential Equations. Wiley, New York (1969)
    • 18. Han, M., Zhang, W.: On Hopf bifurcation in non-smooth planar systems. J. Differ. Equ. 248, 2399–2416 (2010)
    • 19. Huan, S., Yang, X.: On the number of limit cycles in general planar piecewise linear systems. Discrete Contin. Dyn. Syst. 32, 2147–2164...
    • 20. Huan, S., Yang, X.: Existence of limit cycles in general planar piecewise linear systems of saddle–saddle dynamics. Nonlinear Anal. 92,...
    • 21. Huan, S., Yang, X.: On the number of limit cycles in general planar piecewise linear systems of node–node types. J. Math. Anal. Appl....
    • 22. Kowalczyk, P., Piiroinen, P.T.: Two-parameter sliding bifurcation of periodic solutions in a dry-friction oscillator. Physica D 237, 1053–1073...
    • 23. Li, L.: Three crossing limit cycles in planar piecewise linear systems with saddle-focus type. Electron. J. Qual. Theory Differ. Equ....
    • 24. Li, T., Chen, X., Zhao, J.: Harmonic solutions of a dry friction system. Nonlinear Anal.: Real World Appl. 35, 30–44 (2017)
    • 25. Llibre, J., Novaes, D.D., Teixeira, M.A.: Limit cycles bifurcating from the periodic orbits of a discontinuous piecewise linear differential...
    • 26. Llibre, J., Novaes, D.D., Teixeira, M.A.: On the birth of limit cycles for non-smooth dynamical systems. Bull. Sci. Math. 139, 229–244...
    • 27. Llibre, J., Ponce, E.: Three nested limit cycles in discontinuous piecewise linear differential systems with two zeros. Dyn. Contin. Discrete...
    • 28. Llibre, J., Zhang, X.: Limit cycles for discontinuous planar piecewise linear differential systems separated by one straight and having...
    • 29. Kuznetsov, YuA, Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. Int. J. Bifurc. Chaos 13, 2157–2188...
    • 30. Pliete, K.: Über die Anzahl geschlossener Orbits bei unstetigen stÜckweise linearen dynamischen Systemen in der Ebene Diploma Thesis Mathematisches...
    • 31. Shui, S., Zhang, X., Li, J.: The qualitative analysis of a class of planar Filippov systems. Nonlinear Anal. 73, 1277–1288 (2010)
    • 32. Wang, J., Chen, X., Huang, L.: The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math....
    • 33. Wang, J., Huang, C., Huang, L.: Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type. Nonlinear...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno