Ir al contenido

Documat


Normal Forms of Planar Polynomial Differential Systems

  • Turqui, Abderrahmane [1] ; Dahira Dali [1]
    1. [1] University of Sciences and Technology Houari Boumediene
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 18, Nº 1, 2019, págs. 11-33
  • Idioma: inglés
  • DOI: 10.1007/s12346-018-0273-4
  • Enlaces
  • Resumen
    • Using the invariant theory, we develop an algorithmic method, which is based on the construction of a matrix of linear transformation, to compute normal forms of planar polynomial differential systems. We illustrate our method in the case where the planar polynomial differential system is cubic.

  • Referencias bibliográficas
    • 1. Boularas, D.: A new classification of planar homogeneous quadratic systems. Qual. Theory Dyn. Syst. 2(1), 93–110 (2001)
    • 2. Boularas, D., Dali, D.: Sur les bases de concomitants centro-affines des systèmes différentiels quadratiques plans complets. Cahiers Mathématiques...
    • 3. Calin, I.: On rational bases of G L(2, R)-comitants of planar polynomial systems of differential equations. Bul. Acad. Stiinte Repub. Mold....
    • 4. Ciubotaru, S.: Rational bases of G L(2, R)-comitants and of G L(2, R)-invariants for the planar system of differential equations with nonlinearities...
    • 5. Cox, D., Little, J., O’Shea, D.: Ideals Varieties and Algorithms. Undergraduate Texts in Mathematics, 3rd edn. Springer, New York (2007)
    • 6. Dali D.: Gröbner bases of algebraic invariants in polynomial differential systems, pp. 16–21. In: Le Matematiche, LXIII-Fasc. II (2008)
    • 7. Dali, D., Cheng, S.S.: Decomposition of centro-affine covariants of polynomial differential systems. Taiwan. J. Math. 14, 1903–1924 (2010)
    • 8. Date, T.: Classification and analysis of two-dimensional real homogeneous quadratic differential equations systems. J. Differ. Equ. 32(3),...
    • 9. Dieudonné, J., Carrell, J.: Invariant theory, old and new. Adv. Math. 4, 1–80 (1970)
    • 10. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases. J. Pure Appl. Algebra. 139(1), 61–88 (1999)
    • 11. Gurevich, G.B.: Foundation of the Theory of Algebraic Invariants. GITTL, Moscow (1948)
    • 12. Hilbert, D.: Invariant Theory. Cambridge University Press, Cambridge (1789)
    • 13. Lazard, D.: Gröbner bases Gaussian elimination and resolution of systems of algebraic equations. In: Computer algebra, EUROCAL ’83, European...
    • 14. Llibre, J., Vulpe, N.I.: Planar cubic polynomial differential systems with the maximum number of invariant straight lines. Rocky Mt. J....
    • 15. Macari, P.M., Popa, M.N.: Typical representation of polynomial differential systems by means of first-order comitants. Izv. Akad. Nauk...
    • 16. Mott, J.L., Kandel, A., Baker, T.P.: Discrete Mathematics for Computer Scientists and Mathematicians. Prentice Hall, Englewood Cliffs...
    • 17. Popa, M.N.: Applications of Algebras to Differential Systems. Academy of Science of Moldova, Chisinau (2001)
    • 18. Popov, V.L.: Invariant theory. Am. Math. Soc. Trans. 148(2), 99–112 (1991)
    • 19. Schlomiuk, D., Vulpe, N.I.: Planar quadratic differential systems with invariant straight lines of total multiplicity four. Nonlinear...
    • 20. Schlomiuk, D., Vulpe, N.I.: Application of symbolic calculation and polynomial invariant to the classification of singularities of differential...
    • 21. Sibirskii, C.S.: Introduction to the Algebraic Theory of Invariants of Differential Equations, Nonlinear Science, Theory and Applications....
    • 22. Vulpe, N.I.: Polynomial basis of centro-affine comitants of a differential system. Doklady Akademii Nauk SSSR, 250, 5, 1033-7

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno