Ir al contenido

Documat


Dynamical Behavior of Singular Traveling Waves of ( n + 1 )-Dimensional Nonlinear Klein-Gordon Equation

  • Feng, Dahe [1] ; Li, Jibin [2] ; Jiao, Jianjun [1]
    1. [1] Guizhou University of Finance and Economics

      Guizhou University of Finance and Economics

      China

    2. [2] Huaqiao University

      Huaqiao University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 18, Nº 1, 2019, págs. 265-287
  • Idioma: inglés
  • DOI: 10.1007/s12346-018-0285-0
  • Enlaces
  • Resumen
    • This work researches the singular traveling wave system of the (n+1)-dimensional nonlinear Klein-Gordon equation via the bifurcation theory of dynamical systems. The bifurcations and phase portraits of the traveling wave system are investigated and the influence of singularity and nonlinearity on the dynamical behavior of traveling wave solutions is discussed. Accordingly the various sufficient conditions for the existence of analytic and nonanalytic traveling wave solutions are obtained. Furthermore some exact solutions are given to illustrate the results.

  • Referencias bibliográficas
    • 1. Ablowitz, M., Clarkson, P.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)
    • 2. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)
    • 3. Rashidinia, J., Ghasemi, M., Jalilian, R.: Numerical solution of the nonlinear Klein-Gordon equation. J. Comput. Appl. Math. 233, 1866–1878...
    • 4. Wazwaz, A.: Solutions of compact and noncompact structures for nonlinear Klein-Gordon-type equation. Appl. Math. Comput. 134, 487–500 (2003)
    • 5. Tian, L.X., Yu, S.: Nonsymmetrical compacton and multi-compacton of nonlinear intensity KleinCGordon equation. Chaos Solitons Fract. 29,...
    • 6. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)
    • 7. Luo, D., Wang, X., Zhu, D., Han, M.: Bifurcation Theory and Methods of Dynamical Systems. World Scientific, Singapore (1997)
    • 8. Lawrence, P.: Differential Equations and Dynamical Systems. Springer, New York (1991)
    • 9. Ma, Z., Zhou, Y., Li, C.: Qualitative and Stability Methods for Ordinary Differential Equations. Science Press, Beijing (2016)
    • 10. Han, M., Gu, S.: Theory and Method of Nonlinear Systems. Science Press, Beijing (2001)
    • 11. Rosenau, P., Hyman, J.M.: Compactons: solitons with finite wavelengths. Phys. Rev. Lett. 70, 564–567 (1993)
    • 12. Li, Y., Olver, P.J., Rosenau, P.: Non-analytic solutions of nonlinear wave models. In: Grosser, M., Hormann, G., Kunzinger,M., Oberguggenberger,M....
    • 13. Li, J.B., Liu, Z.R.: Smooth and non-smooth traveling waves in a nonlinearly dispersive equation. Appl. Math. Model. 25, 41–56 (2000)
    • 14. Li, J.B., Liu, Z.R.: Travelling wave solutions for a class of nonlinear dispersive equations. Chinese Ann. Math. B 23, 397–418 (2003)
    • 15. Feng, D.H., Li, J.B.: Dynamics and bifurcations of travelling wave solutions of R(m,n) equations. Proc. Indian Acad. Sci. (Math. Sci.)...
    • 16. Feng, D.H., Lü, J.L., Li, J.B., He, T.L.: Bifurcation studies on traveling wave solutions for nonlinear intensity Klein-Gordon equation....
    • 17. Byrd, P., Friedman, M.: Handbook of Elliptic Integrals for Engineers and Physicists. Spring, Berlin (1954)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno