Ir al contenido

Documat


Time-Dependent Polynomials with One Double Root, and Related New Solvable Systems of Nonlinear Evolution Equations

  • Bihun, Oksana [1] ; Calogero, Francesco [2]
    1. [1] University of Colorado
    2. [2] University of Rome “La Sapienza”
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 18, Nº 1, 2019, págs. 153-181
  • Idioma: inglés
  • DOI: 10.1007/s12346-018-0282-3
  • Enlaces
  • Resumen
    • Recently new solvable systems of nonlinear evolution equations—including ODEs, PDEs and systems with discrete time—have been introduced. These findings are based on certain convenient formulas expressing the kth time-derivative of a root of a time-dependent monic polynomial in terms of the kth time-derivative of the coefficients of the same polynomial and of the roots of the same polynomial as well as their time-derivatives of order less than k. These findings were restricted to the case of generic polynomials without any multiple root. In this paper some of these findings—those for k=1 and k=2—are extended to polynomials featuring one double root; and a few representative examples are reported of new solvable systems of nonlinear evolution equations.

  • Referencias bibliográficas
    • 1. Calogero, F.: New solvable variants of the goldfish many-body problem. Stud. Appl. Math. 137(1), 123–139 (2016). https://doi.org/10.1111/sapm.12096
    • 2. Bihun, O., Calogero, F.: A new solvable many-body problem of goldfish type. J. Nonlinear Math. Phys. 23, 28–46 (2016)
    • 3. Bihun, O., Calogero, F.: Novel solvable many-body problems. J. Nonlinear Math. Phys. 23, 190–212 (2016)
    • 4. Bihun, O., Calogero, F.: Generations of monic polynomials such that the coefficients of the polynomials of the next generation coincide...
    • 5. Calogero, F.: A solvable N-body problem of goldfish type featuring N2 arbitrary coupling constants. J. Nonlinear Math. Phys. 23, 300–305...
    • 6. Calogero, F.: Three new classes of solvable N-body problems of goldfish type with many arbitrary coupling constants. Symmetry 8, 53 (2016)
    • 7. Bruschi, M., Calogero, F.: A convenient expression of the time-derivative z (k) n (t), of arbitrary order k, of the zero zn(t) of a time-dependent...
    • 8. Calogero, F.: Novel isochronous N-body problems featuring N arbitrary rational coupling constants. J. Math. Phys. 57, 072901 (2016). https://doi.org/10.1063/1.4954851
    • 9. Calogero, F.: Yet another class of new solvable N-body problems of goldfish type. Qual. Theory Dyn. Syst. 16(3), 561–577 (2017). https://doi.org/10.1007/s12346-016-0215-y
    • 10. Calogero, F.: New solvable dynamical systems. J. Nonlinear Math. Phys. 23, 486–493 (2016)
    • 11. Calogero, F.: Integrable Hamiltonian N-body problems in the plane featuring N arbitrary functions. J. Nonlinear Math. Phys. 24(1), 1–6...
    • 12. Calogero, F.: New C-integrable and S-integrable systems of nonlinear partial differential equation. J. Nonlinear Math. Phys. 24(1), 142–148...
    • 13. Bihun, O., Calogero, F.: Generations of solvable discrete-time dynamical systems. J. Math. Phys. 58, 052701 (2017). https://doi.org/10.1063/1.4928959
    • 14. Calogero, F.: Zeros of Polynomials and Solvable Nonlinear Evolution Equations. Cambridge University Press, Cambridge (2018). (in press)
    • 15. Calogero, F.: Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations, and related “solvable”...
    • 16. Calogero, F.: Classical Many-Body Problems Amenable to Exact Treatments. Lecture Notes in Physics m66. Springer, Heidelberg (2001)
    • 17. Calogero, F.: Isochronous Systems. Oxford University Press, Oxford (2008) (250 pages; marginally updated paperback version, 2012)
    • 18. Gómez-Ullate, D., Sommacal, M.: Periods of the goldfish many-body problem. J. Nonlinear Math. Phys. 12(Suppl. 1), 351–362 (2005)
    • 19. Calogero, F., Gómez-Ullate, D.: Asymptotically isochronous systems. J. Nonlinear Math. Phys. 15, 410–426 (2008)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno