Jiang Liu, Dongcheng Xu, Zengji Du
In this paper, we discuss a reaction–diffusion predator–prey model with nonlocal delays. By using the theory of dynamical systems, specifically based on geometric singular perturbation theory, center manifold theorem and Fredholm theory, we construct an invariant manifold for the associated predator–prey equation and use this invariant manifold to obtain a heteroclinic orbit between two non-negative equilibrium points. Furthermore, we establish the existence result of traveling wave solution for the predator–prey model.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados