Ir al contenido

Documat


Qualitative Analysis of Crossing Limit Cycles in a Class of Discontinuous Liénard Systems with Symmetry

  • Jiang, Fangfang [1] ; Ji, Zhicheng [1] ; Wang, Yan [1]
    1. [1] Jiangnan University

      Jiangnan University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 18, Nº 1, 2019, págs. 85-105
  • Idioma: inglés
  • DOI: 10.1007/s12346-018-0278-z
  • Enlaces
  • Resumen
    • In this paper, we investigate some qualitative properties of crossing limit cycles for a discontinuous symmetric Liénard system with two zones separated by a straight line. In each zone, it is a smooth Liénard system. Firstly, by Poincaré mapping method and geometrical analysis, we provide two criteria concerning the existence, uniqueness and stability of a crossing limit cycle. Secondly, we consider the position problem of the unique crossing limit cycle. Several lemmas are given to obtain an explicit upper bound of amplitude of the limit cycle. Finally, an application to van der Pol model with discontinuous vector field is given, and Matlab simulations are presented to illustrate the obtained theoretical results.

  • Referencias bibliográficas
    • 1. Artés, J.C., Llibre, J., Medrado, J.C., Teixeira, M.A.: Piecewise linear differential systems with two real saddles. Math. Comput. Simul....
    • 2. Braga, D.D.C., Mello, L.F.: More than three limit cycles in discontinuous piecewise linear differential systems with two zones in the plane....
    • 3. Braga, D.D.C., Mello, L.F.: Arbitrary number of limit cycles for planar discontinuous piecewise linear differential systems with two zones....
    • 4. Carmona, V., Fernández-García, S., Freire, E., Torres, F.: Melnikov theory for a class of planar hybrid systems. Physica D 248, 44–54 (2013)
    • 5. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides, Volume 18 of Mathematics and Its Applications (Soviet Series)....
    • 6. Freire, E., Ponce, E., Torres, F.: Canonical discontinuous planar piecewise linear systems. SIAM J. Appl. Dyn. Syst. 11(1), 181–211 (2012)
    • 7. Giannakopoulos, F., Pliete, K.: Planar systems of piecewise linear differential equations with a line of discontinuity. Nonlinearity 14(6),...
    • 8. Hsu, S.B., Hwang, T.W.: Uniqueness of limit cycles for a predator–prey system of holling and leslie type. Canad. Appl. Math. Quart. 6(2),...
    • 9. Huan, S., Yang, X.: Existence of limit cycles in general planar piecewise linear systems of saddle–saddle dynamics. Nonlinear Anal. 92,...
    • 10. Huan, S., Yang, X.: On the number of limit cycles in general planar piecewise linear systems of node–node types. J. Math. Anal. Appl....
    • 11. Hwang, T.W., Tsai, H.J.: Uniqueness of limit cycles in theoretical models of certain oscillating chemical reactions. J. Phys. A 38(38),...
    • 12. Jiang, F., Shi, J.P., Wang, Q.G., Sun, J.: On the existence and uniqueness of a limit cycle for a linard system with a discontinuity line....
    • 13. Jiang, F., Sun, J.: Existence and uniqueness of limit cycle in discontinuous planar differential systems. Qual. Theory Dyn. Syst. 15(1),...
    • 14. Kuang, Y., Freedman, H.I.: Uniqueness of limit cycles in Gause-type models of predator–prey systems. Math. Biosci. 88(1), 67–84 (1988)
    • 15. Li, J.B.: Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 13(1), 47–106...
    • 16. Liu, P., Shi, J.P., Wang, Y.W., Feng, X.H.: Bifurcation analysis of reaction–diffusion Schnakenberg model. J. Math. Chem. 51(8), 2001–2019...
    • 17. Liu, Y., Han, M., Romanovski, V.G.: Some bifurcation analysis in a family of nonsmooth Liénard systems. Int. J. Bifurcat. Chaos Appl....
    • 18. Llibre, J., Ponce, E., Torres, F.: On the existence and uniqueness of limit cycles in Liénard differential equations allowing discontinuities....
    • 19. Llibre, J., Ponce, E., Valls, C.: Uniqueness and non-uniqueness of limit cycles for piecewise linear differential systems with three zones...
    • 20. Sun, Y., Liu, L., Wu, Y.: The existence and uniqueness of positive monotone solutions for a class of nonlinear schrödinger equations on...
    • 21. Wang, J.F., Shi, J.P., Wei, J.J.: Predator–prey system with strong Allee effect in prey. J. Math. Biol. 62(3), 291–331 (2011)
    • 22. Wei, L.J., Zhang, X.: Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete Contin....
    • 23. Xiao, D.M., Zhang, Z.F.: On the uniqueness and nonexistence of limit cycles for predator–prey systems. Nonlinearity 16(3), 1185–1201 (2003)
    • 24. Yang, L.J., Zeng, X.W.: An upper bound for the amplitude of limit cycles in Liénard systems with symmetry. J. Differ. Equ. 258(8), 2701–2710...
    • 25. Zhang, Z.F., Ding, T.R., Huang, W.Z., Dong, Z.-X.: Qualitative Theory of Differential Equations, Volume 101 of Translations of Mathematical...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno