Ir al contenido

Documat


A Quasi Separable Dissipative Maxwell–Bloch System for Laser Dynamics

  • Gorni, Gianluca [1] ; Residori, Stefania [2] ; Zampieri, Gaetano [3]
    1. [1] Università di Udine

      Università di Udine

      Udine, Italia

    2. [2] Université de Nice
    3. [3] Università di Verona
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 18, Nº 2, 2019, págs. 371-381
  • Idioma: inglés
  • DOI: 10.1007/s12346-018-0290-3
  • Enlaces
  • Resumen
    • The Maxwell–Bloch dissipative equations describe laser dynamics. Under a simple condition on the parameters there exist two time-dependent first integrals, that allow a nonstandard separation of variables in the equations. That condition has a precise physical meaning. The separated differential equations lead naturally to simple conjectures on the asymptotic behavior of the physical variables.

  • Referencias bibliográficas
    • 1. Arecchi, F.T., Bonifacio, R.: Theory of optical maser amplifiers IEEE. J. Quantum Electron. 1, 169–178 (1965)
    • 2. Arecchi, F.T., Meucci, R.: Chaos in lasers. Scholarpedia 3(9), 7066 (2008)
    • 3. Gorni, G., Zampieri, G.: Revisiting Noether’s theorem on constants of motion. J. Nonlinear Math. Phys. 21(1), 43–73 (2014)
    • 4. Gorni, G., Zampieri, G.: Nonlocal variational constants of motion in dissipative dynamics (Submitted by Jean Mawhin). Differ. Integral...
    • 5. Gorni, G., Zampieri, G.: Nonstandard separation of variables for the Maxwell–Bloch conservative system. São Paulo J. Math. Sci. 12(1),...
    • 6. Gorni, G., Zampieri, G.: Nonlocal and nonvariational extensions of Killing-type equations. Discrete Contin. Dyn. Syst. Ser. S 11(4), 675–689...
    • 7. Haken, H.: Analogy between higher instabilities in fluids and lasers. Phys. Lett. 53A(1), 77–78 (1975)
    • 8. Haken, H.: Light, Laser Light Dynamics, vol. 2. North-Holland Physics Publishing (1985)
    • 9. Johnson, L.E.: Optically pumped pulsed crystal lasers other than ruby. In: Levine, A.K. (ed.) Lasers, A Series of Advances, vol. 1. Dekker,...
    • 10. McNeil, B.: Due credit for Maxwell–Bloch equations. Nat Photonics 9, 2017 (2015)
    • 11. Newell, A.C., Moloney, J.: Nonlinear Optics. Addison Wesley, Boston (1992)
    • 12. Pucacco, G., Rosquist, K.: Energy dependent integrability. J. Geom. Phys. 115, 16–27 (2017)
    • 13. Tredicce, J.R., Arecchi, F.T., Puccioni, G.P., Poggi, A., Gadomski, W.: Dynamic behavior and onset of low-dimensional chaos in a modulated...
    • 14. Tredicce, J.R., Arecchi, F.T., Lippi, G.L., Puccioni, G.P.: Instabilities in lasers with an injected signal. J. Opt. Soc. Am. B 2(1),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno