Ir al contenido

Documat


On the Asymptotic Stability for Nonlinear Oscillators with Time-Dependent Damping

  • Autores: László Hatvani
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 18, Nº 2, 2019, págs. 441-459
  • Idioma: inglés
  • DOI: 10.1007/s12346-018-0294-z
  • Enlaces
  • Resumen
    • The equation x′′+h(t,x,x′)x′+f(x)=0(x∈R,xf(x)≥0,t∈[0,∞))is considered, where the damping coefficient h allows an estimate a(t)|x′|αw(x,x′)≤h(t,x,x′)≤b(t)W(x,x′).Sufficient conditions on the lower and upper control functions a, b are given guaranteeing that along every motion the total mechanical energy tends to zero as t→∞. The key condition in the main theorem is of the form ∫0∞a(t)ψ(t;a,b)dt=∞,which is required for every member ψ of a properly defined family of test functions. In the second part of the paper corollaries are deduced from this general result formulated by explicit analytic conditions on a, b containing certain integral means. Some of the corollaries improve earlier theorems even for the linear case.

  • Referencias bibliográficas
    • 1. Artstein, Z., Infante, E.F.: On the asymptotic stability of oscillators with unbounded damping. Quart. Appl. Math. 34, 195–199 (1976/77)
    • 2. Ballieu, R.J., Peiffer, K.: Attractivity of the origin for the equation x¨ + f (t, x, x˙)| ˙x| α x˙ + g(x) = 0. J. Math. Anal....
    • 3. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2d edn. University Press, Cambridge (1952)
    • 4. Hartman, P.: Ordinary Differential Equations. Birkhäuser, Boston (1982)
    • 5. Hatvani, L.: A generalization of the Barbashin-Krasovskij theorems to the partial stability in nonautonomous systems. In: Farkas, M. (ed.)...
    • 6. Hatvani, L.: Nonlinear oscillation with large damping. Dyn. Syst. Appl. 1, 257–269 (1992)
    • 7. Hatvani, L.: Integral conditions on the asymptotic stability for the damped linear oscillator with small damping. Proc. Am. Math. Soc....
    • 8. Hatvani, L.: On the damped harmonic oscillator with time dependent damping coefficient. J. Dyn. Diff. Equat. 30, 25–37 (2018). https://doi.org/10.1007/s10884-017-9597-z
    • 9. Hatvani, L., Krisztin, T.: Necessary and sufficient conditions for intermittent stabilization of linear oscillators by large damping. Differ....
    • 10. Hatvani, L., Krisztin, T., Totik, V.: A necessary and sufficient condition for the asymptotic stability of the damped oscillator. J. Differ....
    • 11. Hatvani, L., Totik, V.: Asymptotic stability of the equilibrium of the damped oscillator. Differ. Integral Equ. 6, 835–848 (1993)
    • 12. Karsai, J.: On the asymptotic behaviour of the solutions of a second order linear differential equation with small damping. Acta Math....
    • 13. Karsai, J.: On the asymptotic behaviour of solutions of certain nonlinear differential equations. In: Proceedings of the Eleventh International...
    • 14. Levin, J.J., Nohel, J.A.: Global asymptotic stability for nonlinear systems of differential equations and applications to reactor dynamics....
    • 15. Murakami, S.: Asymptotic behavior of solutions of ordinary differential equations. Tohoku Math. J. (2) 34, 559–574 (1982)
    • 16. Pucci, P., Serrin, J.: Precise damping conditons for global asymptotic stability for nonlinear second order systems. Acta Math. 170, 275–307...
    • 17. Pucci, P., Serrin, J.: Asymptotic stability for intermittently controlled nonlinear oscillators. SIAM J. Math. Anal. 25, 815–835 (1994)
    • 18. Pucci, P., Serrin, J.: Precise damping conditons for global asymptotic stability for nonlinear second order systems. II. J. Differ. Equ....
    • 19. Reissig, R., Sansone, G., Conti, R.: Qualitative Theorie nichtlinearer Differentialgleichungen. Edizioni Cremonese, Rome (1963)
    • 20. Smith, R.A.: Asymptotic stability of x +a(t)x + x = 0. Quart. J. Math. Oxford Ser. (2) 12, 123–126 (1961)
    • 21. Sugie, J.: Smith-type criterion for the asymptotic stability of a pendulum with time-dependent damping. Proc. Am. Math. Soc. 141, 2419–2427...
    • 22. Sugie, J.: Asymptotic stability of coupled oscillators with time-dependent damping. Qual. Theory Dyn. Syst. 15, 553–573 (2016)
    • 23. Sugie, J., Onitsuka, M.: Growth conditions for uniform asymptotic stability of damped oscillators. Nonlinear Anal. 98, 83–103 (2014)
    • 24. Sugie, J., Yamasaki, T.: Global dynamics of Froude-type oscillators with superlinear damping terms. Acta Appl. Math. 130, 81–113 (2014)
    • 25. Surkov, A.G.: Asymptotic stability of certain two-dimensional linear systems. Differ. Uravn. 20, 1452– 1454 (1984). (in Russian)
    • 26. Zheng, W., Sugie, J.: Parameter diagram for global asymptotic stability of damped half-linear oscillators. Monatsh. Math. 179, 149–160...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno