Ir al contenido

Documat


The Existence and Asymptotic Estimates of Solutions for a Third-Order Nonlinear Singularly Perturbed Boundary Value Problem

  • Lin, Xiaojie [1] ; Liu, Jiang [1] ; Wang, Can [1]
    1. [1] Jiangsu Normal University

      Jiangsu Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 18, Nº 2, 2019, págs. 687-710
  • Idioma: inglés
  • DOI: 10.1007/s12346-018-0307-y
  • Enlaces
  • Resumen
    • In this paper, we consider a class of third-order nonlinear differential equation with singular perturbation subject to three-point boundary value conditions, whose solution exhibits a boundary layer at one endpoint. By using the Schauder fixed point theorem, Green’s function and the method of upper–lower solutions, we first establish an existence result of corresponding boundary value problem without perturbation. Furthermore, by constructing an appropriate lower solution-upper solution pair, as well as analysis technique, the existence and asymptotic estimates of the solutions for the singularly perturbed boundary value problems are obtained.

  • Referencias bibliográficas
    • 1. Ahmadinia, M., Safari, Z.: Numerical solution of singularly perturbed boundary value problems by improved least squares method. J. Comput....
    • 2. Howes, F.A.: The asymptotic solution of a class of third-order boundary value problem arising in the theory of thin film flow. SIAM J....
    • 3. Heidel, J.W.: A second-order nonlinear boundary value problem. J. Math. Anal. Appl. 48, 493–503 (1974)
    • 4. Du, Z., Ge, W., Zhou, M.: Singular perturbations for third-order nonlinear multi-point boundary value problem. J. Differ. Equ. 218(1),...
    • 5. Zhao, W.: Singular perturbations of boundary value problems for a class of third-order nonlinear ordinary differential equations. J. Differ....
    • 6. Shen, J., Han, M.: Canard solution and its asymptotic approximation in a second-order nonlinear singularly perturbed boundary value problem...
    • 7. O’Malley, R.E.: Singular Perturbation Methods for Ordinary Differential Equations. Springer, New York (1991)
    • 8. Du, Z.: Existence and uniqueness results for third-order nonlinear differential systems. Appl. Math. Comput. 218, 2981–2987 (2011)
    • 9. Xu, Y., Du, Z., Wei, L.: Geometric singular perturbation method to the existence and asymptotic behavior of traveling waves for a generalized...
    • 10. Chen, A., Guo, L., Deng, X.: Existence of solitary waves and periodic waves for a perturbed generalized BBM equation. J. Differ. Equ....
    • 11. Liu, W., Vleck, E.: Turning points and traveling waves in FitzHugh–Nagumo type equations. J. Differ. Equ. 225, 381–410 (2006)
    • 12. Ou, C., Wu, J.: Persistence of wave fronts in delayed nonlocal reaction–diffusion equations. J. Differ. Equ. 238, 219–261 (2007)
    • 13. Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa–Holm equation via a geometric approach. J. Funct....
    • 14. Bai, Z., et al.: On the existence of blow up solutions for a class of fractional differential equations. Fract. Calc. Appl. Anal. 17,...
    • 15. Wei, Y., Song, Q., Bai, Z.: Existence and iterative method for some fourth order nonlinear boundary value problems. Appl. Math. Lett....
    • 16. Valarmathi, S., Ramanujam, N.: A computational method for solving boundary value problems for third-order singularly perturbed differential...
    • 17. Omel’chenko, O.E., Recke, L., Butuzov, V.F., Nefedov, N.N.: Time-periodic boundary layer solutions to singularly perturbed parabolic problems....
    • 18. Lodhi, R.K., Mishra, H.K.: Quintic B-spline method for solving second order linear and nonlinear singularly perturbed two-point boundary...
    • 19. Kellogg, R.B., Stynes, M.: Corner singularities and boundary layers in a simple convection–diffusion problem. J. Differ. Equ. 213, 81–120...
    • 20. Lagerstrom, P.A.: Matched Asymptotic Expansions. Springer, New York (1988)
    • 21. Kelley, W.: Asymptotically singular boundary value problems. Math. Comput. Model. 32, 541–548 (2000)
    • 22. Xie, F.: On a class of singular boundary value problems with singular perturbation. J. Differ. Eq. 252, 2370–2387 (2012)
    • 23. Franz, S., Kopteva, N.: Green’s function estimates for a singularly perturbed convection–diffusion problem. J. Differe. Eq. 252, 1521–1545...
    • 24. Bai, Z., Du, Z.: Positive solutions for some second-order four-point boundary value problems. J. Math. Anal. Appl. 330, 34–50 (2007)
    • 25. Lin, X., Du, Z.: Positive solutions of M-point boundary value problem for second-order dynamic equations on time scales. J. Differ. Equ....
    • 26. Guo, L., Sun, J., Zhao, Y.: Existence of positive solutions for nonlinear third-order three-point boundary value problems. Nonlinear Anal....
    • 27. Feng, M., Li, P., Sun, S.: Symmetric positive solutions for fourth-order n-dimensional m-Laplace system. Bound. Value Probl. 2018, 63...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno