Ir al contenido

Documat


On the Iteration Invariance of Distributional Chaos of Type 2 1 2 in Non-autonomous Discrete System

  • Wang, Jianjun [1]
    1. [1] Sichuan Agricultural University

      Sichuan Agricultural University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 18, Nº 2, 2019, págs. 711-721
  • Idioma: inglés
  • DOI: 10.1007/s12346-018-0308-x
  • Enlaces
  • Resumen
    • This paper is concerned with invariants for distributional chaos of type 212 in non-autonomous discrete system (X,f1,∞) which converges uniformly and proves that f1,∞ is DC212 if and only if f1,∞[k] is DC212 for any k∈N. This result partly answers the questions posed by Wu and Zhu (Appl Math Lett 26:432–436, 2013).

  • Referencias bibliográficas
    • 1. Ahmadi, S.A., Wu, X., Feng, Z., Ma, X., Lu, T.: On the entropy points and shadowing in uniform spaces. Int. J. Bifurc. Chaos (accepted...
    • 2. Balibrea, F., Smítal, J., Štefánková, M.: The three versions of distributional chaos. Chaos Solitions Fract 23, 1581–1583 (2005)
    • 3. Balibrea, F., Caraballo, T., Kloeden, P.D., Valero, J.: Recent developments in dynamical systems: three perspectives. Int. J. Bifurc. Chaos...
    • 4. Cánovas, J.S.: Li–Yorke chaos in a class of nonautonomous discrete systems. J. Differ. Equ. Appl. 17, 479–486 (2011)
    • 5. Dvorakova, J.: On a problem of iteration invariants for distributional chaos. Commun. Nonlinear Sci. Numer. Simul. 17, 785–787 (2012)
    • 6. Elaydi, S.: Nonautonomous difference equations: open problems and conjectures. Fields Inst. Commun. 42, 423–428 (2004)
    • 7. Elaydi, S., Sacker, R.J.: Nonautonomous Beverton–Holt equations and the Cushing–Henson conjectures. J. Differ. Equ. Appl. 11, 337–346 (2005)
    • 8. Hantáková, J., Roth, S., Roth, Z.: On the weakest version of distributional chaos. Int. J. Bifurc. Chaos 26, 1650235 (2016)
    • 9. Hantáková, J.: Iteration problem for distributional chaos. Int. J. Bifurc. Chaos 27, 1750189 (2017)
    • 10. Kolyada, S., Misiurewicz, M., Snoha, Ł.: Topological entropy of nonautononous piecewise monotone dynamical systems on the interval. Fund....
    • 11. Kolyada, S., Snoha, Ł.: Topological entropy of nonautononous dynamical systems. Random Comput. Dyn. 4, 205–233 (1996)
    • 12. Kolyada, S., Snoha, Ł., Trofimchuk, S.: On minimality of nonautononous dynamical systems. Neliniini Koliv. 7, 86–92 (2004)
    • 13. Li, J., Oprocha, P., Wu, X.: Furstenberg families, sensitivity and the space of probability measures. Nonlinearity 30, 987–1005 (2017)
    • 14. Li, R.: A note on the three versions of distributional chaos. Commun. Nonlinear. Sci. Numer. Simul. 16, 1993–1997 (2011)
    • 15. Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82, 985–992 (1975)
    • 16. Oprocha, P.: Distributional chaos revisited. Trans. Am. Math. Soc. 361, 4901–4925 (2009)
    • 17. Oprocha, P., Wu, X.: On average tracing of periodic average pseudo orbits. Discrete Contin. Dyn. Syst. 37, 4943–4957 (2017)
    • 18. Paganoni, L., Smítal, J.: Strange distributively chaotic triangular maps. Chaos Solitons Fract 26, 581– 589 (2005)
    • 19. Schweizer, B., Smítal, J.: Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Am. Math. Soc....
    • 20. Snchez, I., Sanchis, M., Villanueva, H.: Chaos in hyperspaces of nonautonomous discrete systems. Chaos Solitions Fract 94, 68–74 (2017)
    • 21. Shao, H., Shi, Y., Zhu, H.: On distributional chaos in non-autonomous discrete systems. Chaos Solitions Fract 107, 234–243 (2018)
    • 22. Tang, X., Chen, G., Lu, T.: Some iterate properties of (F1, F2)-Chaos in non-autonomous discrete systems. Entropy 20, 188–197 (2018)
    • 23. Wang, H., Liao, G., Fan, Q.: Substitution systems and the three versions of distributional chaos. Topol. Appl. 156, 262–267 (2008)
    • 24. Wang, L., Huan, S., Huang, G.: A note on Schweizer–Smital chaos. Nonlinear Anal. 68, 1682–1686 (2008)
    • 25. Wu, X.: Chaos of transformations induced onto the space of probability measures. Int. J. Bifurc. Chaos 26, 1650227 (2016)
    • 26. Wu, X.: A remark on topological sequence entropy. Int. J. Bifurc. Chaos 27, 1750107 (2017)
    • 27. Wu, X., Chen, G.: Scrambled sets of shift operators. J. Nonlinear Sci. Appl. 9, 2631–2637 (2016)
    • 28. Wu, X., Ding, X., Lu, T., Wang, J.: Topological dynamics of zadeh’s extension on upper semicontinuous fuzzy sets. Int. J. Bifurc. Chaos...
    • 29. Wu, X., Luo, Y., Ma, X., Lu, T.: Rigidity and sensitivity on uniform spaces. Topol. Appl. (accepted for publication)
    • 30. Wu, X., Luo, Y., Wang, L., Liang, J.:(F1, F2)-chaos and sensitivity for time-varying discrete systems. Politehn. Univ. Bucharest Sci....
    • 31. Wu, X., Ma, X., Zhu, Z., Lu, T.: Topological ergodic shadowing and chaos on uniform spaces. Int. J. Bifurc. Chaos 28, 1850043 (2018)
    • 32. Wu, X., Oprocha, P., Chen, G.: On various definitions of shadowing with average error in tracing. Nonlinearity 26, 1942–1972 (2016)
    • 33. Wu, X., Wang, J., Chen, G.: F-sensitivity and multi-sensitivity of hyperspatial dynamical systems. J. Math. Anal. Appl. 429, 16–26 (2015)
    • 34. Wu, X., Wang, L., Chen, G.: Weighted backward shift operators with invariant distributionally scrambled subsets. Ann. Funct. Anal. 8,...
    • 35. Wu, X., Wang, L., Liang, J.: The chain properties and average shadowing property of iterated function systems. Qual. Theory Dyn. Syst....
    • 36. Wu, X., Wang, X.: On the iteration properties of large deviations theorem. Int. J. Bifurc. Chaos 26, 1650054 (2016)
    • 37. Wu, X., Zhu, P.: Chaos in a class of non-autonomous discrete systems. Appl. Math. Lett. 26, 432–436 (2013)
    • 38. Zhu, H., Shi, Y., Shao, H.: Devaney chaos in nonautonomous discrete systems. Int. J. Bifurc. Chaos 26, 1650190 (2016)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno