Ir al contenido

Documat


Periodic Points for Sphere Maps Preserving Monopole Foliations

  • Graff, Grzegorz [1] ; Misiurewicz, Michał [2] ; Nowak-Przygodzki, Piotr
    1. [1] Gdańsk University of Technology

      Gdańsk University of Technology

      Gdańsk, Polonia

    2. [2] Indiana University–Purdue University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 18, Nº 2, 2019, págs. 533-546
  • Idioma: inglés
  • DOI: 10.1007/s12346-018-0298-8
  • Enlaces
  • Resumen
    • Let S2 be a two-dimensional sphere. We consider two types of its foliations with one singularity and maps f:S2→S2 preserving these foliations, more and less regular. We prove that in both cases f has at least |deg(f)| fixed points, where deg(f) is a topological degree of f. In particular, the lower growth rate of the number of fixed points of the iterations of f is at least log|deg(f)|. This confirms the Shub’s conjecture in these classes of maps.

  • Referencias bibliográficas
    • 1. Babenko, I.K., Bogatyi, S.A.: The behavior of the index of periodic points under iterations of a mapping. Math. USSR Izv. 38, 1–26 (1992)
    • 2. Boro ´nski, J.P.: A fixed point theorem for the pseudo-circle. Topol. Appl. 158, 775–778 (2011)
    • 3. Blokh, A., Oversteegen, L.: A fixed point theorem for branched covering maps of the plane. Fund. Math. 206, 77–111 (2009)
    • 4. Brumfiel, G.: ‘Overwhelming’ evidence for monopoles. Nature 3 (2009). https://doi.org/10.1038/news. 2009.881
    • 5. Graff, G., Jezierski, J.: On the growth of the number of periodic points for smooth self-maps of a compact manifold. Proc. Am. Math. Soc....
    • 6. Graff, G., Jezierski, J.: Minimal number of periodic points for smooth self-maps of S3. Fund. Math. 204, 127–144 (2009)
    • 7. Graff, G., Misiurewicz, M., Nowak-Przygodzki, P.: Periodic points of latitudinal maps of the mdimensional sphere. Discrete Cont. Dyn. Syst....
    • 8. Graff, G., Misiurewicz, M., Nowak-Przygodzki, P.: Shub’s conjecture for smooth longitudinal maps of Sm. J. Differ. Equ. Appl. 24, 1044–1054...
    • 9. Hernández-Corbato, L., Ruiz del Portal, F.R.: Fixed point indices of planar continuous maps. Discrete Contin. Dyn. Syst. 35, 2979–2995...
    • 10. Honorato, G., Iglesias, J., Portela, A., Rovella, A., Valenzuela, F., Xavier, J.: On the growth rate inequality for periodic points in...
    • 11. Iglesias, J., Portela, A., Rovella, A., Xavier, J.: Dynamics of annulus maps II: periodic points for coverings. Fund. Math. 235(3), 257–276...
    • 12. Iglesias, J., Portela, A., Rovella, A., Xavier, J.: Dynamics of annulus maps III: completeness. Nonlinearity 29, 2641–2656 (2016)
    • 13. Jiang, B.J.: Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14. Amer. Math. Soc., Providence (1983)
    • 14. Lloyd, N.G.: Degree Theory, Cambridge Tracts in Mathematics, no. 73. Cambridge University Press, Cambridge (1978)
    • 15. Misiurewicz, M.: Periodic points of latitudinal maps. J. Fixed Point Theory Appl. 16(1–2), 149–158 (2014)
    • 16. Pugh, C., Shub, M.: Periodic points on the 2-sphere. Discrete Contin. Dyn. Syst. 34, 1171–1182 (2014)
    • 17. Shub, M.: Dynamical systems, filtration and entropy. Bull. Am. Math. Soc. 80, 27–41 (1974)
    • 18. Shub, M.: All, most, some differentiable dynamical systems. In: Proceedings of the International Congress of Mathematicians, Madrid, Spain,...
    • 19. Shub, M., Sullivan, P.: A remark on the Lefschetz fixed point formula for differentiable maps. Topology 13, 189–191 (1974)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno