Ir al contenido

Documat


Exact Multiplicity and Stability of Periodic Solutions for Duffing Equation with Bifurcation Method

  • Liang, Shuqing [1]
    1. [1] Jilin University

      Jilin University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 18, Nº 2, 2019, págs. 477-493
  • Idioma: inglés
  • DOI: 10.1007/s12346-018-0296-x
  • Enlaces
  • Resumen
    • Under some Lp-norms(p∈[1,∞]) assumptions for the derivative of the restoring force, the exact multiplicity and the stability of 2π-periodic solutions for Duffing equation are considered. The nontrivial 2π-periodic solutions of it are positive or negative, and the bifurcation curve of it is a unique reversed S-shaped curve. The class of the restoring force is extended, comparing with the class of L∞-norm condition. The proof is based on the global bifurcation theorem, topological degree and the estimates for periodic eigenvalues of Hill’s equation by Lp-norms(p∈[1,∞]).

  • Referencias bibliográficas
    • 1. Alonso, J.M., Ortega, R.: Boundedness and global asymptotic stability of forced oscillator. Nonlinear Anal. 25, 297–309 (1995)
    • 2. Cepiˇ ˇ cka, A., Drábek, P., Jenšiková, J.: On the stability of periodic solutions of the damped pendulum equation. J. Math. Anal. Appl....
    • 3. Chen, H., Li, Y., Hou, X.: Exact multiplicity for periodic solutions of Duffing type. Nonlinear Anal. 55, 115–124 (2003)
    • 4. Chen, H., Li, Y.: Rate of decay of stable periodic solutions of Duffing equations. J. Differ. Equ. 236, 493–503 (2007)
    • 5. Chen, H., Li, Y.: Existence, uniqueness and stability of periodic solutions of an equation of Duffing type. Discrete Contin. Dyn. Syst....
    • 6. Chen, H., Li, Y.: Bifurcation and stability of periodic solutions of Duffing equations. Nonlinearity 21, 2485–2503 (2008)
    • 7. Chu, J., Zhang, M.: Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete Contin. Dyn. Syst. 21, 1071–1094 (2008)
    • 8. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Inc., New York (1987)
    • 9. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1980)
    • 10. Fabry, C., Mawhin, J., Nkashama, M.N.: A multiplicity result for periodic solutions of forced nonlinear second order differential equations....
    • 11. Feng, H., Zhang, M.: Optimal estimates on rotation number of almost periodic systems. Z. Angew. Math. Phys. 57, 183–204 (2006)
    • 12. Katriel, G.: Uniqueness of periodic solutions for asymptotically linear Duffing equations with strong forcing. Topol. Methods Nonlinear...
    • 13. Kielhöfer, H.: Bifurcation Theory: An Introduction with Applications to PDE’s. Springer, New York (2003)
    • 14. Korman, P., Ouyang, T.: Exact multiplicity results for two classes of periodic equations. J. Math. Anal. Appl. 194, 763–779 (1995)
    • 15. Korman, P., Ouyang, T.: Multiplicity results for two classes of boundary-value problems. SIAM J. Math. Anal. 26, 180–189 (1995)
    • 16. Korman, P., Li, Y., Ouyang, T.: An exact multiplicity result for a class of semilinear equations. Commun. Partial Differ. Equ. 22, 661–684...
    • 17. Lazer, A.C., McKenna, P.J.: On the existence of stable periodic solutions of differential equations of Duffing type. Proc. Am. Math. Soc....
    • 18. Lazer, A.C., McKenna, P.J.: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis....
    • 19. Liang, S.: The rate of decay of stable periodic solutions for Duffing equation with L p-conditions. NoDEA Nonlinear Differ. Equ. Appl....
    • 20. Liang, S.: Exact multiplicity and stability of periodic solutions for a Duffing equation. Mediterr. J. Math. 10, 189–199 (2013)
    • 21. Liu, W., Li, Y.: Existence of 2π-periodic solutions for the non-dissipative Duffing equation under asymptotic behaviors of potential function....
    • 22. Llibre, J., Roberto, L.A.: On the periodic solutions of a class of Duffing differential equations. Discrete Contin. Dyn. Syst. 33, 277–282...
    • 23. Loud, W.S.: Periodic solutions of x + cx + g(x) = f (t). Mem. Am. Math. Soc. 31, 58 (1959)
    • 24. Mawhin, J.: Global results for the forced pendulum equation. In: Cañada, A., Drábek, P., Fonda, A. (eds.) Handbook of Differential Equation:...
    • 25. Njoku, F.I., Omari, P.: Stability properties of periodic solutions of a Duffing equation in the presence of lower and upper solutions....
    • 26. Ortega, R.: Prevalence of non-degenerate periodic solutions in the forced pendulum equation. Adv. Nonlinear Stud. 13, 219–229 (2013)
    • 27. Ortega, R.: Some applications of the topological degree to stability theory. In: Granas, A., Frigon, M. (eds.) Topological Methods in...
    • 28. Ortega, R.: The first interval of stability of a periodic equation of Duffing type. Proc. Am. Math. Soc. 115, 1061–1067 (1992)
    • 29. Ortega, R.: Stability and index of periodic solutions of an equation of Duffing type. Boll. UMI B 3, 533–546 (1989)
    • 30. Ouyang, T., Shi, J.: Exact multiplicity of positive solutions for a class of semilinear problem II. J. Differ. Equ. 158, 94–151 (1999)
    • 31. Talenti, G.: Best constant in Sobolov inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)
    • 32. Tarantello, G.: On the number of solutions for the forced pendulum equation. J. Differ. Equ. 80, 79–93 (1989)
    • 33. Torres, P.J.: Existence and stability of periodic solution of a Duffing equation by using a new maximum principle. Mediterr. J. Math....
    • 34. Torres, P.J.: Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem....
    • 35. Torres, P.J., Zhang, M.: A monotone iterative scheme for a second order nonlinear equation based a generalized anti-maximum principle....
    • 36. Van Horssen, W.T., Pischanskyy, O.V.: On the stability properties of a damped oscillator with a periodically time-varying mass. J. Sound...
    • 37. Wang, H., Li, Y.: Existence and uniqueness of periodic solutions for Duffing equations across many points of resonance. J. Differ. Equ....
    • 38. Wang, S., Yeh, T.: A theorem on reversed S-shaped bifurcation curves for a class of boundary value problems and its application. Nonlinear...
    • 39. Zhang, M.: Optimal conditions for maximum and antimaximum principles of the periodic solution problem. Bound. Value Probl. 2010, 1–26...
    • 40. Zhang, M.: Certain classes of potentials for P-Laplacian to be non-degenerate. Math. Nachr. 278, 1823–1836 (2005)
    • 41. Zhang, M.: The rotation number approach to eigenvalue of the one-dimensional p-Laplacian with periodic potentials. J. Lond. Math. Soc....
    • 42. Zhang, M., Li, W.: A Lyapunov-type stability criterion using Lα norms. Proc. Am. Math. Soc. 130, 3325–3333 (2002)
    • 43. Zeidler, E.: Applied Functional Analysis: Main Principles and Their Applications, Applied Mathematical Sciences 109, vol. 2. Springer,...
    • 44. Zitan, A., Ortega, R.: Existence of asymptotically stable periodic solutions of a forced equation of Liénard type. Nonlinear Anal. 22,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno