Ir al contenido

Documat


The Monotonicity of the Apsidal Angle Using the Theory of Potential Oscillators

  • Rojas, D [1]
    1. [1] Universidad de Granada

      Universidad de Granada

      Granada, España

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 17, Nº 3, 2018, págs. 631-635
  • Idioma: inglés
  • DOI: 10.1007/s12346-017-0265-9
  • Enlaces
  • Resumen
    • In a central force system the angle between two successive passages of a body through pericenters is called the apsidal angle. In this paper we prove that for central forces of the form f(r)∼λr-(α+1) with α<2 the apsidal angle is a monotonous function of the energy, or equivalently of the orbital eccentricity.

  • Referencias bibliográficas
    • 1. Bertrand, J.: Théoréme relatif au mouvement d’un point attiré vers un centre fixe. Comptes Rendus Acad. Sci. 77, 849–853 (1873)
    • 2. Castelli, R.: The monotonicity of the apsidal angle in power-law potential systems. J. Math. Anal. Appl. 428, 653–676 (2015)
    • 3. Danby, J.M.: Fundamentals of Celestial Mechanics, 2nd edn. Willmann-Bell Inc., Richmond (1988)
    • 4. Grant, A.K., Rosner, J.L.: Classical orbits in power-law potentials. Am. J. Phys. 62(4), 310–315 (1994)
    • 5. Mañosas, F., Rojas, D., Villadelprat, J.: Study of the period function of a two-parameter family of centers. J. Math. Anal. Appl. 452,...
    • 6. Ortega, R., Rojas, D.: A short proof of Bertrand’s theorem using the theory of isochronous potentials (2017) (preprint)
    • 7. Schaaf, R.: A class of Hamiltonian systems with increasing periods. J. Reine Angew. Math. 363, 96–109 (1985)
    • 8. Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th edn. Cambridge University Press, Cambridge (1959)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno