Ir al contenido

Documat


The Hamilton–Jacobi Analysis of Powers of Singular Lagrangians: A Connection Between the Modified Schrödinger and the Navier–Stokes Equations

  • Rami Ahmad El-Nabulsi [1]
    1. [1] Athens Institute for Education and Research
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 17, Nº 3, 2018, págs. 583-608
  • Idioma: inglés
  • DOI: 10.1007/s12346-017-0257-9
  • Enlaces
  • Resumen
    • Non-standard Lagrangians have gained recently an increasing interest in the theory of nonlinear differential equations, classical and quantum nonlinear dynamical systems. In this work, we discuss a number of dynamical systems characterized by powers of singular Lagrangians identified to non-standard Lagrangians based on the resulting Hamilton–Jacobi equation. A number of dynamical problems were addressed and a number of statements which support the non-standard Lagrangians formalism were postulated. After connecting the action to a certain complex wave function and in particular for the case of linear potentials, a link is established between the resulting modified Schrödinger equation which describes specific classes of quantum mechanical systems and the Navier–Stokes equation which describes the motion of viscous fluid matters.

  • Referencias bibliográficas
    • 1. Alekseev, A.I., Arbuzov, B.A.: Classical Yang–Mills field theory with nonstandard Lagrangian. Theor. Math. Phys. 59, 372–378 (1984)
    • 2. Alekseev, A.I., Vshivtsev, A.S., Tatarintsev, A.V.: Classical non-abelian solutions for non-standard Lagrangians. Theor. Math. Phys. 77(2),...
    • 3. Allison, A., Pearce, C.E.M., Abbott, D.: A variational approach to the analysis of dissipative electromechanical systems. PloS One 2(9),...
    • 4. Ambrosetti, A., Zelati, V.C.: Periodic Solutions of Singular Lagrangian Systems. Birkhauser, Springer, Berlin (1993)
    • 5. Balseiro, P., Marrero, J.C., Martin De Diego, D., Padron, E.: A unified framework for mechanics: Hamilton–Jacobi equation and applications....
    • 6. Bateman, H.: On dissipative systems and related variational principles. Phys. Rev. 38(4), 815–819 (1931)
    • 7. Batlle, C., Gomis, J., Pons, J.M., Román-Roy, N.: Lagrangian and Hamiltonian constraints for second order singular Lagrangians. J. Phys....
    • 8. Bauer, P.S.: Dissipative dynamical systems. PNAS 5(17), 311–314 (1931)
    • 9. Bender, C.M., Holm, D., Hook, D.W.: Complex trajectories of a simple pendulum. J. Phys. A Math. Gen. 40, F81–F90 (2007)
    • 10. Bender, C.M., Holm, D., Hook, D.W.: Complexified dynamical systems. J. Phys. A Math. Gen. 40, F793–F804 (2007)
    • 11. Bender, C.M., Brody, D.C., Hook, D.W.: Quantum effects in classical systems having complex energy. J. Phys. A Math. Theor. 41, 352003–352018...
    • 12. Blatt, F.J.: Modern Physics. McGraw-Hill, New York (1992)
    • 13. Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘hidden variables’ I. Phys. Rev. 85, 166–179 (1952)
    • 14. Carinena, J.F., Ranada, M.F., Santander, M.: Lagrangian formalism for nonlinear second-order Riccati systems: one-dimensional integrability...
    • 15. Carinena, J.F., Nunez, J.F.: Geometric approach to dynamics obtained by deformation of Lagrangians. Nonlinear Dyn. 83(1), 457–461 (2016)
    • 16. Carinena, J.F., Nunez, J.F.: Geometric approach to dynamics obtained by deformation of timedependent Lagrangians. Nonlinear Dyn. 86(2),...
    • 17. Carinera, J.F.: Theory of singular Lagrangians. Fortschr. Phys. 38(9), 641–679 (1990)
    • 18. Chandrasekar, V.K., Pandey, S.N., Senthilvelan, M., Lakshmanan, M.: Simple and unified approach to identify integrable nonlinear oscillators...
    • 19. Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator....
    • 20. Cieslinski, J.L., Nikiciuk, T.: A direct approach to the construction of standard and non-standard Lagrangians for dissipative. J. Phys....
    • 21. Cisneros-Parra, J.U.: On singular Lagrangians and Dirac’s method. Rev. Mex. Fis. 58, 61–68 (2012)
    • 22. Cortes, V., Haupt, A.S.: Mathematical methods of classical physics, arXiv: 1612.03100v1
    • 23. Curtright, T., Mezincescu, L.: Biorthogonal quantum systems. J. Math. Phys. 48, 092106 (2007). (34 pages)
    • 24. Dector, A., Morales-Tecotl, H.A., Urrutia, L.F., Vergara, J.D.: An alternative canonical approach to the ghost problem in a complexified...
    • 25. Deng, Y., Jin, L., Peng, S.: Solutions of Schrödinger equations with inverse square potential and critical nonlinearity. J. Differ. Equ....
    • 26. Denman, H.H., Buch, L.H.: Solution of the Hamilton–Jacobi equation for certain dissipative classical mechanical systems. J. Math. Phys....
    • 27. Dimitrijevic, D.D., Milosevic, M.: About non-standard Lagrangians in cosmology. AIP Conf. Proc. Phys. Conf. 1472, 41–46 (2012)
    • 28. Dirac, P.A.M.: Lectures on Quantum Mechanics. Belfer Graduate School of Science, Yeshiva University, New York (1964)
    • 29. El-Nabulsi, R.A.: Non-linear dynamics with non-standard Lagrangians. Qual. Theory Dyn. Syst. 12(2), 273–291 (2013)
    • 30. El-Nabulsi, R.A.: Non-standard non-local-in-time Lagrangians in classical mechanics. Qual. Theory. Dyn. Syst. 13(1), 149–160 (2014)
    • 31. El-Nabulsi, R.A.: Non-standard power-law Lagrangians in classical and quantum dynamics. Appl. Math. Lett. 43, 120–127 (2015)
    • 32. El-Nabulsi, R.A.: Lagrangian and Hamiltonian dynamics with imaginary time. J. Appl. Anal. 18(2), 283–296 (2012)
    • 33. El-Nabulsi, R.A.: Fractional quantum Euler–Cauchy equation in the Schrödinger picture, complexified oscillators and emergence of complexified...
    • 34. El-Nabulsi, R.A.: Fractional variational approach for dissipative mechanical systems. Anal. Theor. Appl. 30(3), 1–10 (2014)
    • 35. Fanelli, L., Felli, V., Fontelos, M.A., Primo, A.: Time decay of scaling critical electromagnetic Schrödinger flows. Commun. Math. Phys....
    • 36. Fernandez de Cordoba, P., Isidro, J.M., Vazquez Molina, J.: Schrödinger vs. Navier Stokes. Entropy 18, 34 (2016). (12 pages)
    • 37. Frank, W.M., Land, D.J., Spector, R.M.: Singular potentials. Rev. Mod. Phys. 43, 36–98 (1971)
    • 38. Grillo, G., Hovarik, H.: Weighted dispersive estimates for two-dimensional Schrödinger operators with Aharonov–Bohm magnetic field. J....
    • 39. Ghosh, S., Modak, S.J.: Classical oscillator with position-dependent mass in a complex domain. Phys. Lett. A 373, 1212–1217 (2009)
    • 40. Graefe, E.M., Honing, M., Korsch, H.J.: Classical limit of non-Hermitian quantum dynamics-a generalized canonical structure. J. Phys....
    • 41. Goldberg, M., Vega, L., Visciglia, N.: Counter examples of Strichartz inequalities for Schrödinger equations with repulsive potentials....
    • 42. Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1980)
    • 43. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, New York (1990)
    • 44. Hassan, E.H.: Hamilton–Jacobi formalism for singular Lagrangians with linear accelerations. Mod. Appl. Sci. 8(3), 31–36 (2014)
    • 45. Heifetz, E., Cohen, E.: Toward a thermo-hydrodynamic like description of Schrödinger equation via the Madelung formulation and Fisher...
    • 46. Hojman, S., Urrutia, L.F.: On the inverse problem of the calculus of variations. J. Math. Phys. 22, 1896–1903 (1981)
    • 47. Jarab’ah, O.A., Nawafleh, K.I., Ghassib, H.B.: A Hamilton–Jacobi treatment of dissipative systems. Eur. Sci. J. 9(30), 70–81 (2013)
    • 48. Jungel, A., Milisic, J.-P.: Full compressible Navier–Stokes equations for quantum fluids: derivation and numerical solutions. Kinetic...
    • 49. Kovarik, H., Truc, F.: Schrödinger operators on a half-line with inverse square potentials, IF PREPUB. hal-00959561 (2014)
    • 50. Kulish, V.V., Lage, J.L.: On the relationship between fluid velocity and de Broglie’s wave function and the implications to the Navier–Stokes...
    • 51. Lipovka, A.: Nature of the quantum potential. J. Appl. Math. Phys. 4, 897–902 (2016)
    • 52. Liu, S., Guan, F., Wang, Y., Liu, C., Guo, Y.: The nonlinear dynamics based on the nonstandard Hamiltonians. Nonlinear Dyn. 88, 1229–1236...
    • 53. Ma, X., Soukoulis, C.M.: Schrödinger equation with imaginary potential. Phys. B296, 107–111 (2001)
    • 54. Madelung, E.: Quantentheorie in hydrodynamischer form. Z. Phys. A40, 322–326 (1927)
    • 55. Markus, F., Gambar, K.: Generalized Hamilton–Jacobi equation for simple dissipative processes. Phys. Rev. E 70, 016123–6 (2004)
    • 56. Musielak, Z.E.: Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A Math. Theor....
    • 57. Musielak, Z.E.: General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems. Chaos Solitons Fractals...
    • 58. Parthasarathy, R.: Relativistic Quantum Mechanics. Alpha Science International, Oxford (2010)
    • 59. Pimentel, B.M., Teixeira, R.G.: Hamilton–Jacobi formulation for singular Lagrangians with second order Lagrangians, Instituto de Física...
    • 60. Raidal, M., Veermae, H.: On the quantization of complex higher derivative theories and avoiding the Ostrogradsky ghost. Nucl. Phys. B...
    • 61. Riccia, C.D.: A Hamilton–Jacobi treatment of dissipative systems with one degree of freedom. In: Dynamical Systems and Microphysics, vol....
    • 62. Sanz, A.S.: Bohm’s approach to quantum mechanics: alternative theory or practical picture? arXiv: 1707.00609
    • 63. Saha, A., Talukdar, B.: Inverse variational problem for non-standard Lagrangians. Rep. Math. Phys. 3(3), 299–309 (2014)
    • 64. Samengo, I., Barrachina, R.O.: Rainbow and glory scattering in Coulomb trajectories starting from a point in space. Eur. J. Phys. 15,...
    • 65. Schrödinger, E.: Quantizierung als Eigenwertproblem (Erste Mitteilung). Ann. der Phys 79, 361–376 (1926)
    • 66. Schrödinger, E.: Uber das Verhaltnis der Heisenberg Born Jordanischen Quantenmechanik zu der meinen. Ann. der Phys. 79, 734–756 (1926)
    • 67. Scholze, M.: Classical Mechanics and Dynamical Systems with Applications in Mathematica. Department of Applied Mathematics, Faculty of...
    • 68. Sonego, S.: Interpretation of the hydrodynamical formalism of quantum mechanics. Found. Phys. 21, 1135–1181 (1991)
    • 69. Tsekov, R.: Thermo-quantum diffusion. Int. J. Theor. Phys. 48, 630–636 (2009)
    • 70. Vadasz, P.: Rendering the Navier-Stokes equations for a compressible fluid into the Schrödinger equation for quantum mechanics. Fluids...
    • 71. White, F.M.: Fluid Mechanics. McGraw-Hill, New York (2003)
    • 72. Yang, J., Ju, Q.: Existence of global weak solutions for Navier–Stokes–Poisson equations with quantum effect and convergence to incompressible...
    • 73. Yang, J., Li, Y.: Global existence of weak solution for quantum Navier–Stokes–Poisson equations. J. Math. Phys. 58, 071507–071512 (2017)
    • 74. Yang, J., Ju, Q.: Convergence of the quantum Navier-Stokes-Poisson equations to the incompressible Euler equations for general initial...
    • 75. Yariv, A.: Optical Electronics in Modern Communications. Oxford University Press, New York (1997)
    • 76. Zhang, Y., Zhou, X.S.: Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangians. Nonlinear Dyn. 84(2),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno