Ir al contenido

Documat


The Center Problem for the Lotka Reactions with Generalized Mass-Action Kinetics

  • Boros, Balázs [1] ; Hofbauer, Josef [1] ; Müller, Stefan [1] ; Regensburger, Georg [2]
    1. [1] University of Vienna

      University of Vienna

      Innere Stadt, Austria

    2. [2] Johannes Kepler University of Linz

      Johannes Kepler University of Linz

      Linz, Austria

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 17, Nº 2, 2018, págs. 403-410
  • Idioma: inglés
  • DOI: 10.1007/s12346-017-0243-2
  • Enlaces
  • Resumen
    • Chemical reaction networks with generalized mass-action kinetics lead to power-law dynamical systems. As a simple example, we consider the Lotka reactions and the resulting planar ODE. We characterize the parameters (positive coefficients and real exponents) for which the unique positive equilibrium is a center.

  • Referencias bibliográficas
    • 1. Boros, B., Hofbauer, J., Müller, S.: On global stability of the Lotka reactions with generalized massaction kinetics. Acta Appl. Math....
    • 2. Dancsó, A., Farkas, H., Farkas, M., Szabó, G.: Investigations into a class of generalized twodimensional Lotka–Volterra schemes. Acta Appl....
    • 3. Devaney, R.L.: Reversible diffeomorphisms and flows. Trans. Am. Math. Soc. 218, 89–113 (1976)
    • 4. Farkas, H., Noszticzius, Z.: Generalized Lotka–Volterra schemes and the construction of twodimensional explodator cores and their Liapunov...
    • 5. Kuznetsov, Y.A.: Elements of applied bifurcation theory, volume 112 of Applied Mathematical Sciences. 3rd edn. Springer, New York (2004)
    • 6. Kuznetsova, O.A.: An example of symbolic computation of Lyapunov quantities in Maple. In: Proceedings of the 5th WSEAS Congress on Applied...
    • 7. Lotka, A.J.: Contribution to the theory of periodic reactions. J. Phys. Chem. 14(3), 271–274 (1910)
    • 8. Lotka, A.J.: Analytical note on certain rhythmic relations in organic systems. Proc. Natl. Acad. Sci. 6(7), 410–415 (1920)
    • 9. Lotka, A.J.: Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 42, 1595–1599 (1920)
    • 10. Müller, S., Regensburger, G.: Generalized mass action systems: complex balancing equilibria and sign vectors of the stoichiometric and...
    • 11. Müller, S., Regensburger, G.: Generalized mass-action systems and positive solutions of polynomial equations with real and symbolic exponents....
    • 12. Nemytskii, V.V., Stepanov, V.V.: Qualitative Theory of Differential Equations. Princeton University Press, Princeton (1960)
    • 13. Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: A Computational Algebra Approach. Birkhäuser Boston Inc, Boston (2009)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno