Ir al contenido

Documat


Algebraic Traveling Wave Solutions, Darboux Polynomials and Polynomial Solutions

  • Valls, Claudia [1]
    1. [1] Universidade de Lisboa

      Universidade de Lisboa

      Socorro, Portugal

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 17, Nº 2, 2018, págs. 429-439
  • Idioma: inglés
  • DOI: 10.1007/s12346-017-0245-0
  • Enlaces
  • Resumen
    • In this paper we completely characterize the existence of algebraic traveling wave solutions for the celebrated Kolmogorov–Petrovskii–Piskunov/Zeldovich equation. To do it, we find necessary and sufficient conditions in order that a polynomial linear differential equation has a polynomial solution and we classify all the Darboux polynomials of the planar system x˙=y, y˙=-c/dy+f(x)(f′(x)+r) where f is a polynomial with degf≥2, c,d>0 and r are real constants. All results are of interest by themselves.

  • Referencias bibliográficas
    • 1. Ablowitz, M.J., Segur, H.: Solitons and Inverse Scattering Transform. SIAM, Philadelphia (1981)
    • 2. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)
    • 3. Borhanifar, A., Jafari, H., Karini, S.A.: New solitons and periodic solutions and the Kadomtsev– Petviashvili equation. J. Nonlinear Sci....
    • 4. Borhanifar, A., Kabir, M.M., Maryam, L.: Vahdat, New periodic and soliton wave solutions for the generalized Zakharov system and (2+1)-dimensional...
    • 5. Gasull, A., Giacomini, H.: Explicit travelling waves and invariant algebraic curves. Nonlinerity 28, 1597–1606 (2015)
    • 6. Gilding, B.H., Kersner, R.: Travelling Waves in Nonlinear Diffusion Convection Reaction. Birkhuser, Basel (2004)
    • 7. Hayashi, M.: On polynomial Liénard systems which have invariant algebraic curves. Funkc. Ekvacioj 39, 403–408 (1996)
    • 8. He, J.H.: The Homotopy perturbation method for nonlinear oscillatros with discontinuities. Appl. Math. Comput. 151, 287–292 (2004)
    • 9. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)
    • 10. Jafari, H., Borhanifar, A., Karini, S.A.: New solitary wave solutions for the bad Boussinesq and good Boussinesq equations. Numer. Metholds...
    • 11. Kolmogorov, A., Petrovskii, I. and Piskunov, N.: A study of the diffusion equation with increase in the amount of substance, and its application...
    • 12. Liu, G.T., Fan, T.Y.: New applications of developed Jacobi elliptic function expansion methods. Phys. Lett. A 345, 161–166 (2005)
    • 13. Newell, A.C., Whitehead, J.A.: Finite bandwidth, finite amplitude convection. J. Fluid Mech. 38, 279–303 (1969)
    • 14. Valls, C.: Algebraic traveling waves for some family of reaction–diffusion equations including the Nagumo equations. NoDEA Nonlinear Differ....
    • 15. Valls, C.: Algebraic traveling waves for the generalized Newell–Whitehead–Segel equation. Nonlinear Anal. Real World Appl. 36, 249–266...
    • 16. Valls, C.: Complete characterization of algebraic traveling wave solutions for the Boussinesq, Klein– Gordon and Benjamin–Bona–Mahony...
    • 17. Wang, M.L.: Exact solutios for a compound Kdv Burgers equation. Phys. Lett. A. 213, 279–287 (1996)
    • 18. Yan, Z.Y.: An improved algebra method and its applications in nonlinear wave equtaions. Chaos, Solitons Fractals 21, 1013–1021 (2004) 19....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno