Ir al contenido

Documat


A Bifurcation in the Family of Periodic Orbits for the Spatial Isosceles 3 Body Problem

  • Perdomo, Oscar M [1]
    1. [1] Central Connecticut State University

      Central Connecticut State University

      Town of New Britain, Estados Unidos

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 17, Nº 2, 2018, págs. 411-428
  • Idioma: inglés
  • DOI: 10.1007/s12346-017-0244-1
  • Enlaces
  • Resumen
    • In this paper we describe a 1-dimensional family of initial conditions Σ that provides reduced periodic solutions of the spatial isosceles 3-body problem. This family Σ contains a bifurcation point that make it look like the union of two embedded smooth curves. We will explain how the trajectories of the bodies in the solutions coming from one of the embedded curves have two symmetries while those coming from the other embedded curve only have one symmetry. We give an explanation for the existence of this bifurcation point.

  • Referencias bibliográficas
    • 1. Buchanan, D.: A new isosceles-triangle solution of the three body problem. Trans. Am. Math. Soc. 16(3), 259–274 (1915)
    • 2. Buchanan, D.: Oscillations near an isosceles-triangle solution of the problem of three bodies as the finet masses become unequal. Am. J....
    • 3. Buchanan, D.: Orbits asymptotic to an isosceles-triangle solution of the problem of three bodies. Proc. Lond. Math. Soc. S2–17(1), 54–74...
    • 4. Buchanan, D.: Asymptotic isosceles-triangle solution for unequal masses. Rend. Circ. Mat. Palermo. 62, 1–10 (1939)
    • 5. Corbera, M., Llibre, J.: Family of periodic orbits for the spatial isosceles 3-body problem. SIAM J. Math. Anal. 35(5), 1311–1346 (2010)
    • 6. Devaney, R.: Triple collision in the planar isosceles three-body problem. Invent. Math 60, 249–267 (1980)
    • 7. Hénon, H.: A family of periodic solutions of the planar three-body problem, and their stability. Celest. Mech. 13, 267–285 (1976)
    • 8. Martinez, R., Simo, C.: Qualitative study of the planar isosceles three-body problem. Celest. Mech. 41, 179–251 (1987)
    • 9. McGehee, R.: Triple collision in the collinear three-body problem. Invent. Math. 27, 191–227 (1974)
    • 10. Meyer, K., Wang, Q.: The global phase structure of the three-dimensional isosceles three-body problem with zero energy. In: Hamiltonian...
    • 11. Meyer, K., Schmidt, D.: Libration of central configurations and braided saturn rings. Celest. Mech. Dyn. Astron. 55, 289–303 (1993)
    • 12. Offin, D., Cabral, H.: Hyperbolicity for symmetric periodic orbits in the isosceles three body problem. Discrete Contin. Dyn. Syst. Ser....
    • 13. Ortega, R., Rivera, A.: Global bifurcation from the center of mass in the sitnikov problem. Discrete Contin. Dyn. Syst. Ser. S 14(2),...
    • 14. Perdomo: A family of solution of the n body problem. http://arxiv.org/pdf/1507.01100.pdf (2014)
    • 15. Perdomo: A small variation of the Taylor method and periodic solution of the 3-body problem. http:// arxiv.org/pdf/1410.1757.pdf
    • 16. Xia, Z.: The existence of noncollision singularities in Newtonian systems. Ann. Math. 135, 411–468 (1992)
    • 17. Yan, D., Ouyang, T.: New phenomenons in the spatial isosceles three-body problem. Int. J. Bifurc. Chaos Appl. Sci. Eng. 25, 1550169 (2015)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno