Ir al contenido

Documat


Hopf Bifurcation for a φ -Laplacian Liénard System

  • Liang, Feng [1] ; Feng, Tao [1]
    1. [1] Anhui Normal University

      Anhui Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 17, Nº 1, 2018, págs. 203-218
  • Idioma: inglés
  • DOI: 10.1007/s12346-016-0217-9
  • Enlaces
  • Resumen
    • In this paper, we mainly focus on a φ-Laplacian Liénard system on the plane and study its Hopf bifurcation by establishing an algebraic method to obtain equivalent focus values. As applications, several concrete systems are considered for the Hopf cyclicity.

  • Referencias bibliográficas
    • 1. Blows, T., Lloyd, N.: The number of small-amplitude limits cycles of Liénard equations. Math. Proc. Camb. Philos. Soc. 95, 359–366 (1984)
    • 2. Caubergh, M.: Hilbert’s sixteenth problem for polynomial Liénard equations. Qual. Theory Dyn. Syst. 11, 3–18 (2012)
    • 3. Christopher, C., Lynch, S.: Small-amplitude limit cycles in polynomial Liénard systems with quadratic or cubic damping or restoring forces....
    • 4. Gasull, A., Torregrosa, J.: Small-amplitude limit cycles in Liénard systems via multiplicity. J. Differ. Equ. 159, 186–211 (1999)
    • 5. Han, M.: Lyapunov constants and Hopf cyclicity of Liénard system. Ann. Differ. Equ. 15, 113–126 (1999)
    • 6. Han, M.: Bifurcation Theory of Limit Cycles. Science Press, Beijing (2013)
    • 7. Han, M., Romanovski, V.: On the number of limit cycles of polynomial Liénard systems. Nonlinear Anal. Real World Appl. 14, 1655–1668 (2013)
    • 8. Jiang, J., Han, M.: Small-amplitude limit cycles of some Liénard-type systems. Nonlinear Anal. 71, 6373–6377 (2009)
    • 9. Jin, H., Shui, S.: Limit cycles of a class of cubic Liénard qquations. Qual. Theory Dyn. Syst. 10, 317–326 (2011)
    • 10. Li, C., Libre, J.: Uniqueness of limit cycles for Liénard differential equations of degree four. J. Differ. Equ. 252, 3142–3162 (2012)
    • 11. Llibre, J., Mereu, A., Teixeira, M.: Limit cycles of the generalized polynomial Liénard differential equations. Math. Proc. Camb. Philos....
    • 12. Manásevich, R., Sedziwy, S.: p-Laplacian and Liénard-type equation. Rovky Mt. J. Math. 27, 611–617 (1997)
    • 13. Pérez-González, S., Torregrosa, J., Torres, P.: Existence and uniqueness of limit cycles for generalized ϕ-Laplacian Liénard equations....
    • 14. Sugie, J., Kono, A., Yamaguchi, A.: Existence of limit cycles for Liénard-type systems with pLaplacian. Nonlinear Differ. Equ. Appl. 14,...
    • 15. Tian, Y., Han, M.: Hopf bifurcation for two types of Liénard systems. J. Differ. Equ. 251, 834–859 (2011)
    • 16. Yang, J., Han, M.: Romanovski V: Limit cycle bifurcations of some Liénard systems. J. Math. Anal. Appl. 366, 242–255 (2010)
    • 17. Yang, J., Han, M.: Limit cycle bifurcations of some Liénard systems with a cuspidal loop and a homoclinic loop. Chaos Solitons Fract....
    • 18. Yu, P., Han, M.: Limit cycles in generalized Liénard systems. Chaos Solitons Fract. 30, 1048–1068 (2006)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno