Ir al contenido

Documat


Internal Layer Solution of Singularly Perturbed Optimal Control Problem with Integral Boundary Condition

  • Wu, Limeng [1] ; Ni, Mingkang [2] ; Lu, Haibo [3]
    1. [1] Hebei Normal University of Science and Technology

      Hebei Normal University of Science and Technology

      China

    2. [2] East China Normal University

      East China Normal University

      China

    3. [3] Shanghai Institute of Technology

      Shanghai Institute of Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 17, Nº 1, 2018, págs. 49-66
  • Idioma: inglés
  • DOI: 10.1007/s12346-017-0261-0
  • Enlaces
  • Resumen
    • In this paper, we investigate a class of singularly perturbed optimal control problem with integral boundary condition. By means of k+σ exchange lemma, the existence of internal layer solution for the optimal control problem is proved. Meanwhile, the uniformly valid asymptotic solution is constructed by the boundary function method. Finally, an example is given for illustrating the main result.

  • Referencias bibliográficas
    • 1. Ionkin, N.I.: Solution of a boundary value problem in heat conduction theory with nonlocal boundary conditions. Differ. Equ. 13, 294–304...
    • 2. Nicoud, F., Schonfeld, T.: Integral boundary conditions for unsteady biomedical CFD applications. Int. J. Numer. Methods Fluids. 40, 457–465...
    • 3. Amiraliyev, G.M., Cakir, M.: Numerical solution of the singularly perturbed problem with nonlocal boundary condition. Appl. Math. Mech....
    • 4. Cakir, M., Amiraliyev, G.M.: A finite difference method for the singularly perturbed problem with nonlocal boundary condition. Appl. Math....
    • 5. Xie, F., Jin, Z.Y., Ni, M.K.: On the step-type contrast structure of a second-order semilinear differential equation with integral boundary...
    • 6. Butuzov, V.F., Vasil’eva, A.B.: Asymptotic behavior of a solution of contrasting structure type. Math. Notes. 42(6), 956–961 (1987)
    • 7. Vasil’eva, A.B., Butuzov, V.F., Nefedov, N.N.: Contrast structures in singularly perturbed problems. Fundam. Prikl. Mat. 4, 799–851 (1998)
    • 8. Wang, A.F.: The spike-type contrast structure for a second-order semi-linear singularly perturbed differential equation with integral boundary...
    • 9. Wang, A.F., Ni, M.K.: The interior layer for a nonlinear singularly perturbed differential difference equation. Acta Math. Sci. 32B(2),...
    • 10. Xie, F., Zhang, L.: A nonlinear second-order singularly perturbed problem with integral boundary condition. J. East China Norm. Univ....
    • 11. Mo, J.Q.: A class of shock solution for quasilinear Robin problems. Acta Math. Sci. 28A(5), 818–822 (2008)
    • 12. Tin, S.K., Kopell, N., Jones, C.K.R.T.: Invariant manifolds and singularly perturbed boundary value problems. SIAM J. Numer. Anal. 31,...
    • 13. Ni, M.K., Dmitriev, M.G.: Steplike contrast structure in an elementary optimal control problem. Comput. Math. Math. Phys. 50(8), 1312–1323...
    • 14. Ni, M.K., Lin, W.Z.: Minimizing sequence of variational problems with small parameters. Appl. Math. Mech. (English Edition). 30(6), 695–701...
    • 15. Vega, C.D.L.: Necessary conditions for optimal terminal time control problems governed by a Volterra integral equation. J. Optim. Theory...
    • 16. Bonnans, J.F., Vega, C.D.L., Dupuis, X.: First and second-order optimality conditions for optimal control problems of state constrained...
    • 17. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)
    • 18. Lin, X.B.: Shadowing lemma and singularly perturbed boundary value problems. SIAM J. Appl. Math. 49, 26–54 (1989)
    • 19. Vasil’eva, A.B., Butuzov, V.F.: Asymptotic Expansions of Solutions for Singularly Perturbed Equations. Nauka, Moscow (1973)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno