Ir al contenido

Documat


Existence of Solution for a p-Laplacian Multi-point Boundary Value Problem at Resonance

  • Lin, Xiaojie [1] ; Zhang, Qin [1]
    1. [1] Jiangsu Normal Universit
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 17, Nº 1, 2018, págs. 143-154
  • Idioma: inglés
  • DOI: 10.1007/s12346-017-0259-7
  • Enlaces
  • Resumen
    • In this paper, we are concerned with the p-Laplacian multi-point boundary value problem (ϕp(x′′(t)))′=f(t,x(t),x′(t),x′′(t)),t∈(0,1),ϕp(x′′(0))=∑i=1mαiϕp(x′′(ξi)),x′(1)=∑j=1nβjx′(ηj),x′′(1)=0,where ϕp(s)=|s|p-2s,p>1,ϕq=ϕp-1,1p+1q=1,f:[0,1]×R3→R is a continuous function, 0<ξ1<ξ2<⋯<ξm<1,αi∈R,i=1,2,…,m,m≥2 and 0<η1<⋯<ηn<1,βj∈R,j=1,…,n,n≥1. Based on the extension of Mawhin’s continuation theorem, a new general existence result of the p-Laplacian problem is established in the resonance case.

  • Referencias bibliográficas
    • 1. Gaines, R.E., Mawhin, J.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin (1977)
    • 2. Feng, W., Webb, J.R.L.: Solvability of three point boundary value problems at resonance. Nonlinear Anal. TMA 30, 3227–3238 (1997)
    • 3. Feng, W., Webb, J.R.L.: Solvability of m-point boundary value problems with nonlinear growth. J. Math. Anal. Appl. 212, 467–480 (1997)
    • 4. Liu, B., Yu, J.: Solvability of multi-point boundary value problem at resonance (I). Indian J. Pure Appl. Math. 33, 475–494 (2002)
    • 5. Yin, J., Du, Z.: A second order differential equation with generalized Sturm–Liouville integral boundary conditions at resonance. Filomat...
    • 6. Lin, X., Zhao, B., Du, Z.: A third-order multi-point boundary value problem at resonance with one three dimensional kernel space. Carpathian...
    • 7. Liu, B.: Solvability of multi-point boundary value problem at resonance (II). Appl. Math. Comput. 136, 353–377 (2003)
    • 8. Wang, Y., Zhang, G., Ge, W.: Multi-point boundary value problems for one-dimensional p-Laplacian at resonance. J. Appl. Math. Comput. 22,...
    • 9. Ni, X., Ge, W.: Multi-point boundary value problems for the p-Laplacian at resonance. Electron. J. Differ. Equ. 2003, 1–7 (2003)
    • 10. Bai, Z.: Solvability for a class of fractional m-point boundary value problem at resonance. Comput. Math. Appl. 62(3), 1292–1302 (2011)
    • 11. Bai, Z., Zhang, Y.: Solvability of fractional three-point boundary value problems with nonlinear growth. Appl. Math. Comput. 218(5), 1719–1725...
    • 12. Du, B., Hu, X.: A new continuation theorem for the existence of solutions to p-Laplacian BVP at resonance. Appl. Math. Comput. 208, 172–176...
    • 13. Du, Z., Feng, Z.: Periodic solutions of a neutral impulsive predator–prey model with Beddington– DeAngelis functional response with delays....
    • 14. Chen, X., Du, Z.: Existence of positive periodic solutions for a neutral delay predator-prey model with Hassell-Varley type functional...
    • 15. Ge, W., Ren, J.: An extension of Mawhin’s continuation theorem and its application to boundary value problems with a p-Laplacain. Nonlinear...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno