Ir al contenido

Documat


A Coordinate-Independent Version of Hoppensteadt’s Convergence Theorem

  • Lax, Christian [1] ; Seliger, Katrin [1] ; Walcher, Sebastian [1]
    1. [1] Rheinisch-Westfälische Technische Hochschule Aachen University

      Rheinisch-Westfälische Technische Hochschule Aachen University

      Städteregion Aachen, Alemania

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 17, Nº 1, 2018, págs. 7-28
  • Idioma: inglés
  • DOI: 10.1007/s12346-017-0235-2
  • Enlaces
  • Resumen
    • The classical theorems about singular perturbation reduction (due to Tikhonov and Fenichel) are concerned with convergence on a compact time interval (in slow time) as a small parameter approaches zero. For unbounded time intervals Hoppensteadt gave a convergence theorem, but his criteria are generally not easy to apply to concrete given systems. We state and prove a convergence result for autonomous systems on unbounded time intervals which relies on criteria that are relatively easy to verify, in particular for the case of a one-dimensional slow manifold. As for applications, we discuss several reaction equations from biochemistry.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno