Ir al contenido

Documat


On the Chebyshev Property of Certain Abelian Integrals Near a Polycycle

    1. [1] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 17, Nº 1, 2018, págs. 261-270
  • Idioma: inglés
  • DOI: 10.1007/s12346-017-0226-3
  • Enlaces
  • Resumen
    • Dumortier and Roussarie formulated in (Discrete Contin Dyn Syst 2:723–781, 2009) a conjecture concerning the Chebyshev property of a collection I0,I1,…,In of Abelian integrals arising from singular perturbation problems occurring in planar slow-fast systems. The aim of this note is to show the validity of this conjecture near the polycycle at the boundary of the family of ovals defining the Abelian integrals. As a corollary of this local result we get that the linear span ⟨I0,I1,…,In⟩ is Chebyshev with accuracy k=k(n).

  • Referencias bibliográficas
    • 1. Arnold, V.I.: Arnold’s Problems. Springer, Berlin (2004)
    • 2. Dumortier, F., Li, C., Zhang, Z.: Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops. J....
    • 3. Dumortier, F., Roussarie, R.: Abelian integrals and limit cycles. J. Differ. Equ. 227, 116–165 (2006)
    • 4. Dumortier, F., Roussarie, R.: Birth of canard cycles. Discrete Contin. Dyn. Syst. 2, 723–781 (2009)
    • 5. Figueras, J.-L., Tucker, W., Villadelprat, J.: Computer-assisted techniques for the verification of the Chebyshev property of Abelian integrals....
    • 6. Françoise, J.-P., Xiao, D.: Perturbation theory of a symmetric center within Liénard equations. J. Differ. Equ. 259, 2408–2429 (2015)
    • 7. Grau, M., Mañosas, F., Villadelprat, J.: A Chebyshev criterion for Abelian integrals. Trans. Am. Math. Soc. 363, 109–129 (2011)
    • 8. Han, M.: Asymptotic expansions of Melnikov functions and limit cycle bifurcations. Int. J. Bifurc. Chaos Appl. Sci. Eng. 22, 1250296 (2012)
    • 9. Karlin, S., Studden,W.: Tchebycheff Systems: with Applications in Analysis and Statistics. Interscience Publishers, Geneva (1966)
    • 10. Mazure, M.: Chebyshev spaces and Bernstein bases. Constr. Approx. 22, 347–363 (2005)
    • 11. Voorhoeve, M., van der Poorten, A.J.: Wronskian determinants and the zeros of certain functions. Indag. Math. 37, 417–424 (1975)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno