Ir al contenido

Documat


Traveling Fronts of a Real Supercritical Ginzburg–Landau Equation Coupled by a Slow Diffusion

  • Tu, Menghuai [1] ; Shen, Jianhe [1] ; Zhou, Zheyan [1]
    1. [1] Fujian Normal University

      Fujian Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 17, Nº 1, 2018, págs. 29-48
  • Idioma: inglés
  • DOI: 10.1007/s12346-017-0264-x
  • Enlaces
  • Resumen
    • Ginzburg–Landau equation plays a very important role in a wide range of physical contexts. Much attention had been given to explore the dynamics of the waves in Ginzburg–Landau equations as well as its various coupled reaction–diffusion systems. In this article, dynamical system techniques such as the methods of geometric singular perturbation theory and Melnikov function are combined to show the persistence (existence) and bifurcations of traveling fronts in a real supercritical Ginzburg–Landau equation coupled by a slow diffusion mode. It is shown that heteroclinic saddle-node bifurcation occurs under certain parametric values such that 1, 2 and even 3 heteroclinic solutions may exist. The critical manifolds of the parameters corresponding to the heteroclinic saddle-node bifurcations are explicitly determined.

  • Referencias bibliográficas
    • 1. van Saarloos,W.: Fronts, pulses, sources and sinks in generalized complex Ginzburg–Landau equations. Phys. D 56, 303–367 (1992)
    • 2. Stewartson, K., Stuart, J.T.: A nonlinear instability theory for a wave system in plane Poiseuille flow. J. Fluid Mech. 48, 529–545 (1971)
    • 3. Kuramoto, Y.: Chemical Oscillations, Wave and Turbulence. Springer, New York (1984)
    • 4. Doelman, Traveling: waves in the complex Ginzburg–Landau equation. J. Nonlinear Sci. 3, 225–266 (1993)
    • 5. Doelman, A., Hek, G., Valkhoff, N.: Stabilization by slow diffusion in a real Ginzburg–Landau system. J. Nonlinear Sci. 14, 237–278 (2004)
    • 6. Doelman, A., Hek, G., Valkhoff, N.: Algebraically decaying pulses in a Ginzburg–Landau system with a neutrally stable mode. Nonlinearity...
    • 7. Riecke, H.: Self-trapping of traveling-wave pulses in binary mixture convection. Phys. Rev. Lett. 68, 301–304 (1992)
    • 8. Riecke, H.: Solitary wave under the influence of a long-wave mode. Phys. D 92(1–2), 69–94 (1996)
    • 9. Dewel, G., Metens, S., Hilali, M.F., Borckmans, P., Price, C.B.: Resonant patterns through coupling with a zero mode. Phys. Rev. Lett....
    • 10. Komarova, N.L., Newell, A.C.: Nonlinear dynamics of sand banks and sand waves. J. Fluid Mech. 415, 285–321 (2000)
    • 11. Coullet, P., Fauve, S.: Propagative phase dynamics for systems with Galilean invariance. Phys. Rev. Lett. 55, 2857–2859 (1985)
    • 12. Doelman, A., Gardner, R.A., Jones, C.K.R.T.: Instability of quasiperiodic solution in Ginzburg–Landau equation. Proc. R. Soc. Edinb. 125A,...
    • 13. Norbury, J., Wei, J., Winter, M.: Existence and stability of singular pattern in a Ginzburg–Landau equation coupled by a mean field. Nonlinearity...
    • 14. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Johnson, R. (ed.) Dynamical Systems, Montecatibi Terme. Lecture Notes in...
    • 15. Fenichel, N.: Geometrical singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)
    • 16. Robinson, C.: Sustained resonance for a nonlinear system with slowly-varying coefficients. SIAM J. Math. Anal. 14, 847–860 (1983)
    • 17. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)
    • 18. Doelman, A., Gardner, R.A., Kaper, T.J.: Large stable pulse solutions in reaction–diffusion equations. Indiana Univ. Math. J. 50, 443–507...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno