Ir al contenido

Documat


An Effective Iteration Method for a Class of Nonlinear Singular Perturbed Problems

  • Wang, Xiaoyun [1] ; Pan, Yuyang [1] ; Bai, Liang [1]
    1. [1] Taiyuan University of Technology

      Taiyuan University of Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 17, Nº 1, 2018, págs. 155-175
  • Idioma: inglés
  • DOI: 10.1007/s12346-017-0240-5
  • Enlaces
  • Resumen
    • In this paper we investigate a class of singular perturbed differential equations with initial conditions. Based on the equations cannot solved easily by the traditional methods, we give a simple but effective method for finding their approximate periodic solutions firstly. That is, we introduce an iterative technique to the singular perturbed nonlinear system and then adopt the classical perturbed technique to give the approximate solutions. Secondly, some typical examples given to illustrate the methods is a useful tool in solving the nonlinear singular perturbed systems. At last, we present a windowing technique for the system. The convergence processes can be speeded up when we take the windowing technique. These methods can be easily extended to other nonlinear systems and found widely applicable in engineering.

  • Referencias bibliográficas
    • 1. Wollkind, D.J.: Singular perturbation techniques: a comparison of the method of matched asymptotic expansions with that of multiple scles....
    • 2. Nafeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)
    • 3. Holmes, M.H.: Introduction to Perturbation Methods. World Scientific Publishing, Singapore (1999)
    • 4. Boglaev, I.: A uniform monotone alternating direction scheme for nonlinear singularly perturbed parabolic problems. J. Comput. Appl. Math....
    • 5. Xie, F.: On a class of singular boundary value problems with singular perturbation. J. Differ. Equ. 252(3), 2370–2387 (2012)
    • 6. Franz, S., Kopteva, N.: Green’s function estimates for a singularly perturbed convection–diffusion problem. J. Differ. Equ. 252(2), 1521–1545...
    • 7. Meyer, K.R., Palacian, J.F., Yanguas, P.: The elusive Liapunov periodic solutions. Qual. Theor. Dyn. Syst. 14(2), 381–401 (2015)
    • 8. Ducrot, A., Langlais, M.: A singular reaction–diffusion system modelling prey–predator interactions: invasion and co-extinction waves....
    • 9. Boglaev, I.: Uniform quadratic convergence of monotone iterates for nonlinear singularly perturbed parabolic problems. Numer. Algorithms...
    • 10. Dumortier, F.: Slow divergence integral and balanced canard solutions. Qual. Theor. Dyn. Syst. 10(1), 65–85 (2011)
    • 11. Mickens, R.E.: Iteration procedure for determining approximate solutions to non-linear oscillator equations. J. Sound Vib. 116(1), 185–187...
    • 12. Chen, Y.M., Liu, J.K.: A modied Mickens iteration procedure for nonlinear oscillators. SIAM J. Numer. Anal. 314, 465–473 (2008)
    • 13. Lim, C.W., Wu, B.S.: A new analytical approach to the Duffing-harmonic oscillator. Phys. Lett. A. 311(4–5), 365–373 (2003)
    • 14. Marinca, V., Herisanu, N.: An optimal iteration method for strongly nonlinear oscillators. J. Appl. Math. 906341, 1–11 (2012)
    • 15. Song, B., Jiang, Y.L.: Analysis of a new parareal algorithm based on waveform relaxation method for time-periodic problems. Numer. Algorithms...
    • 16. Jiang, Y.L.: Windowing waveform relaxation of initial value problems. Acta. Math. Appl. Sin. E 22(4), 575–588 (2006)
    • 17. Leimkuhler, B.: Estimating waveform relaxation convergence. SIAM J. Sci. Comput. 14(4), 872–889 (1993)
    • 18. Sand, J., Burrage, K.: A Jacobi waveform relaxation method for ODEs. SIAM J. Sci. Comput. 20(2), 534–552 (1999)
    • 19. Jiang, Y.L., Chen, R.M.M., Wing, O.: Improving convergence performance of relaxation-based transient analysis by matrix splitting in circuit...
    • 20. Lumsdaine, A., Reichelt, M.W., Squyres, J.M., White, J.K.: Accelerated waveform methods for parallel transient simulation of semiconductor...
    • 21. Jiang, Y.L.: A general approach to waveform relaxation solutions of differential-algebraic equations: the continuous-time and discrete-time...
    • 22. Jiang, Y.L.: Periodic waveform relaxation solutions of nonlinear dynamic equtions. Appl. Math. Comput. 135(2–3), 219–226 (2003)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno