Ir al contenido

Documat


A Discussion on Practical Considerations with Sparse Regression Methodologies

  • Sarwar, Owais [1] ; Sauk, Benjamin [1] ; Sahinidis, Nikolaos V. [2]
    1. [1] Carnegie Mellon University

      Carnegie Mellon University

      City of Pittsburgh, Estados Unidos

    2. [2] Georgia Institute of Technology

      Georgia Institute of Technology

      Estados Unidos

  • Localización: Statistical science, ISSN 0883-4237, Vol. 35, Nº. 4, 2020, págs. 593-601
  • Idioma: inglés
  • DOI: 10.1214/20-STS806
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Sparse linear regression is a vast field and there are many different algorithms available to build models. Two new papers published in Statistical Science study the comparative performance of several sparse regression methodologies, including the lasso and subset selection. Comprehensive empirical analyses allow the researchers to demonstrate the relative merits of each estimator and provide guidance to practitioners. In this discussion, we summarize and compare the two studies and we examine points of agreement and divergence, aiming to provide clarity and value to users. The authors have started a highly constructive dialogue, our goal is to continue it.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno