Ir al contenido

Documat


Trees with vertex-edge Roman Domination number twice the domination number minus one

  • Naresh Kumar, H. [1] ; Venkatakrishnan, Y. B. [1]
    1. [1] SASTRA University

      SASTRA University

      India

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 39, Nº. 6, 2020, págs. 1381-1392
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-2020-06-0084
  • Enlaces
  • Resumen
    • A vertex-edge Roman dominating function (or just ve-RDF) of a graph G = (V, E) is a function f : V (G) ? {0, 1, 2} such that for each edge e = uv either max{f (u), f (v)} ? 0 or there exists a vertex w such that either wu ? E or wv ? E and f (w) = 2. The weight  of a ve-RDF is the sum of its function values over all vertices. The vertex-edge Roman domination number of a graph G, denoted by ?veR(G), is the minimum weight of a ve-RDF G. We characterize trees with vertexedge roman domination number equal to twice domination number minus one.

  • Referencias bibliográficas
    • H. A. Ahangar, J. Amjadi, M. Chellali, S. Nazari-Moghaddam, and S. M, heikholeslami, “Trees with double roman domination number twice the...
    • R. Boutrig, M. Chellali, T. W. Haynes, and S. T. Hedetniemi, “Vertex-edge domination in graphs”, Aequationes mathematicae, vol. 90, no. 2,...
    • M. Chellali and N. J. Rad, “Trees with unique Roman dominating functions of minimum weight”, Discrete mathematics, algorithms and applications,...
    • E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi, and S. T. Hedetniemi, “Roman domination in graphs”, Discrete mathematics, vol. 278, no. 1-3,...
    • B. Krishnakumari, Y. B. Venkatakrishnan, and M. Krzywkowski, “Bounds on the vertex–edge domination number of a tree”, Comptes rendus mathematique,...
    • J. R. Lewis, S. T. Hedetniemi, T. W. Haynes, and G. H. Fricke, “Vertex-edge domination”, Utilitas mathematica, vol. 81, pp. 193-213, 2010.
    • J. W. Peters, “Theoretical and algorithmic results on domination and connectivity”, Ph. D. Thesis, Clemson University, 1986. [On line]. Available:...
    • P. R. L. Pushpam and S. Padmapriea, “Global Roman domination in graphs”, Discrete applied mathematics, vol. 200, pp. 176–185, Feb. 2016, doi:...
    • E. N. Satheesh, “Some variations of domination and applications”, Ph. D. Thesis, Mahatma Gandhi University, 2014. [On line]. Available: https://bit.ly/2HvoErI
    • X. Zhang, Z. Li, H. Jiang, and Z. Shao, “Double Roman domination in trees”, Information processing letters, vol. 134, pp. 31–34, Jun. 2018,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno