Ir al contenido

Documat


On angular localization of spectra of perturbed operators

  • M. I. Gil [1]
    1. [1] Ben-Gurion University of the Negev

      Ben-Gurion University of the Negev

      Israel

  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 35, Nº 2, 2020, págs. 197-204
  • Idioma: inglés
  • DOI: 10.17398/2605-5686.35.2.197
  • Enlaces
  • Resumen
    • Let A and à be bounded operators in a Hilbert space. We consider the following problem: let the spectrum of A lie in some angular sector. In what sector the spectrum of à lies if A and à are “close”? Applications of the obtained results to integral operators are also discussed.

  • Referencias bibliográficas
    • [1] Yu.L. Daleckii, M.G. Krein, “Stability of Solutions of Differential Equations in Banach Space”, Vol. 43, American Mathematical Society,...
    • [2] M.I. Gil’, “Operator Functions and Operator Equations”, World Scientific Publishing Co. Pte. Ltd., Hackensack, New Jersey, 2018.
    • [3] M.I. Gil’, Norm estimates for resolvents of linear operators in a Banach space and spectral variations, Adv. Oper. Theory 4 (1) (2019),...
    • [4] G.H. Hostetter, An improved test for the zeros of a polynomial in a sector, IEEE Trans. Automatic Control AC-20 (3) (1975), 433 – 434.
    • [5] E.I. Jury, N.K. Bose, B.D.O. Anderson, A simple test for zeros of a complex polynomial in a sector, IEEE Trans. Automatic Control AC-19...
    • [6] E.I. Jury, N.K. Bose, B.D.O. Anderson, On eigenvalues of complex matrices in a sector, IEEE Trans. Automatic Control AC-20 (1975), 433...
    • [7] M.G. Krein, The angular localization of the spectrum of a multiplicative integral in Hilbert space (in Russian) Funkcional. Anal. i Prilozhen...
    • [8] G.V. Rozenblyum, Angular asymptotics of the spectrum of operators that are close to normal, J. Soviet Math. 45 (3) (1989), 1250 – 1261.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno