Ir al contenido

Documat


The Radó–Kneser–Choquet theorem for p-harmonic mappings between Riemannian surfaces

  • Tomasz Adamowicz [1] ; Jarmo Jääskeläinen [2] ; Aleksis Koski [2]
    1. [1] Polish Academy of Sciences

      Polish Academy of Sciences

      Warszawa, Polonia

    2. [2] University of Jyväskylä

      University of Jyväskylä

      Jyväskylä, Finlandia

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 36, Nº 6, 2020, págs. 1779-1834
  • Idioma: inglés
  • DOI: 10.4171/rmi/1183
  • Enlaces
  • Resumen
    • In the planar setting, the Radó–Kneser–Choquet theorem states that a harmonic map from the unit disk onto a Jordan domain bounded by a convex curve is a diffeomorphism provided that the boundary mapping is a homeomorphism. We prove the injectivity criterion of Radó–Kneser–Choquet for p-harmonic mappings between Riemannian surfaces.

      In our proof of the injectivity criterion we approximate the p-harmonic map with auxiliary mappings that solve uniformly elliptic systems. We prove that each auxiliary mapping has a positive Jacobian by a homotopy argument. We keep the maps injective all the way through the homotopy with the help of the minimum principle for a certain subharmonic expression that is related to the Jacobian.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno