Ir al contenido

Documat


Discrepancy for convex bodies with isolated flat points

  • Luca Brandolini [1] ; Leonardo Colzani [2] ; Bianca Gariboldi [1] ; Giacomo Gigante [1] ; Giancarlo Travaglini [2]
    1. [1] University of Bergamo

      University of Bergamo

      Bérgamo, Italia

    2. [2] Università di Milano-Bicocca
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 36, Nº 6, 2020, págs. 1597-1626
  • Idioma: inglés
  • DOI: 10.4171/rmi/1177
  • Enlaces
  • Resumen
    • We consider the discrepancy of the integer lattice with respect to the collection of all translated copies of a dilated convex body having a finite number of flat, possibly non-smooth, points in its boundary. We estimate the Lp norm of the discrepancy with respect to the translation variable, as the dilation parameter goes to infinity. If there is a single flat point with normal in a rational direction we obtain, for certain values of p, an asymptotic expansion for this norm. Anomalies may appear when two flat points have opposite normals. Our proofs depend on careful estimates for the Fourier transform of the characteristic function of the convex body.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno