Ir al contenido

Documat


The Ruelle operator for symmetric β –shifts

  • Autores: A. O. Lopes, Víctor Vargas Saboya
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 64, Nº 2, 2020, págs. 661-680
  • Idioma: inglés
  • DOI: 10.5565/publmat6422012
  • Enlaces
  • Referencias bibliográficas
    • D. Aguiar, L. Cioletti, and R. Ruviaro, A variational principle for the speci_c entropy for symbolic systems with uncountable alphabets, Math....
    • R. Alcaraz Barrera, Topological and ergodic properties of symmetric subshifts,Discrete Contin. Dyn. Syst. 34(11) (2014), 4459-4486. DOI: 10.3934/dcds.2014.34.4459.
    • R. Alcaraz Barrera, S. Baker, and D. Kong, Entropy, topological transitivity,and dimensional properties of unique q-expansions, Trans. Amer....
    • S. Baker and W. Steiner, On the regularity of the generalised golden ratiofunction, Bull. Lond. Math. Soc. 49(1) (2017), 58-70. DOI: 10.1112/blms.12002.
    • A. Baraviera, R. Leplaideur, and A. Lopes, \Ergodic Optimization, ZeroTemperature Limits and the Max-Plus Algebra", 29o Col_oquio Brasileiro...
    • R. Bissacot and E. Garibaldi, Weak KAM methods and ergodic optimal problemsfor countable Markov shifts, Bull. Braz. Math. Soc. (N.S.) 41(3)...
    • R. Bissacot and R. dos Santos Freire, Jr., On the existence of maximizingmeasures for irreducible countable Markov shifts: a dynamical proof,...
    • L. Cioletti and E. A. Silva, Spectral properties of the Ruelle operator onthe Walters class over compact spaces, Nonlinearity 29(8) (2016),...
    • G. Contreras, A. O. Lopes, and Ph. Thieullen, Lyapunov minimizing measuresfor expanding maps of the circle, Ergodic Theory Dynam. Systems...
    • P. Erd}os, M. Horv_ath, and I. Jo_o, On the uniqueness of the expansions1 =Pq􀀀ni , Acta Math. Hungar. 58(3-4) (1991), 333-342....
    • P. Erd}os, I. Jo_o, and V. Komornik, Characterization of the unique expansions1 =P1i=1 q􀀀ni and related problems, Bull. Soc....
    • R. Freire and V. Vargas, Equilibrium states and zero temperature limiton topologically transitive countable Markov shifts, Trans. Amer. Math....
    • E. Garibaldi, \Ergodic Optimization in the Expanding Case'. Concepts, Toolsand Applications", SpringerBriefs in Mathematics, Springer,...
    • P. Glendinning and N. Sidorov, Unique representations of real numbers innon-integer bases, Math. Res. Lett. 8(4) (2001), 535-543. DOI: 10.4310/MRL.2001.v8.n4.a12.
    • O. Jenkinson, R. D. Mauldin, and M. Urba_nski, Zero temperature limits ofGibbs-equilibrium states for countable alphabet subshifts of _nite...
    • V. Komornik, D. Kong, and W. Li, Hausdor_ dimension of univoque sets andDevil's staircase, Adv. Math. 305 (2017), 165-196. DOI: 10.1016/j.aim.2016.03.047.
    • R. Leplaideur, A dynamical proof for the convergence of Gibbs measuresat temperature zero, Nonlinearity 18(6) (2005), 2847-2880. DOI: 10.1088/0951-7715/18/6/023.
    • D. Lind and B. Marcus, \An Introduction to Symbolic Dynamics and Coding",Cambridge University Press, Cambridge, 1995. DOI: 10.1017/CBO9780511626302.
    • A. O. Lopes, J. K. Mengue, J. Mohr, and R. R. Souza, Entropy and variationalprinciple for one-dimensional lattice systems with a general a...
    • R. D. Mauldin and M. Urba_nski, Gibbs states on the symbolic space over anin_nite alphabet, Israel J. Math. 125 (2001), 93-130. DOI: 10.1007/BF02773377.
    • I. D. Morris, Entropy for zero-temperature limits of Gibbs-equilibrium statesfor countable-alphabet subshifts of _nite type, J. Stat. Phys....
    • W. Parry, On the _-expansions of real numbers, Acta Math. Acad. Sci. Hungar.11 (1960), 401-416. DOI: 10.1007/BF02020954.
    • W. Parry and M. Pollicott, Zeta functions and the periodic orbit structureof hyperbolic dynamics, Ast_erisque 187-188 (1990), 268 pp.
    • A. R_enyi, Representations for real numbers and their ergodic properties, ActaMath. Acad. Sci. Hungar. 8 (1957), 477-493. DOI: 10.1007/BF02020331.
    • D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Comm. Math.Phys. 9(4) (1968), 267-278.
    • O. M. Sarig, Thermodynamic formalism for countable Markov shifts, ErgodicTheory Dynam. Systems 19(6) (1999), 1565-1593. DOI: 10.1017/S0143385799146820.
    • K. Thomsen, On the structure of beta shifts, in: \Algebraic and TopologicalDynamics", Contemp. Math. 385, Amer. Math. Soc., Providence,...
    • P. Walters, Equilibrium states for _-transformations and related transformations,Math. Z. 159(1) (1978), 65-88. DOI: 10.1007/BF01174569.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno