Ir al contenido

Documat


Approximate Bayesian inference for mixture cure models

  • E. Lázaro [1] ; C. Armero [1] ; V. Gómez-Rubio [2]
    1. [1] Universitat de València

      Universitat de València

      Valencia, España

    2. [2] Universidad de Castilla-La Mancha

      Universidad de Castilla-La Mancha

      Ciudad Real, España

  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 29, Nº. 3, 2020, págs. 750-767
  • Idioma: inglés
  • DOI: 10.1007/s11749-019-00679-x
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Cure models in survival analysis deal with populations in which a part of the individuals cannot experience the event of interest. Mixture cure models consider the target population as a mixture of susceptible and non-susceptible individuals. The statistical analysis of these models focuses on examining the probability of cure (incidence model) and inferring on the time to event in the susceptible subpopulation (latency model). Bayesian inference for mixture cure models has typically relied upon Markov chain Monte Carlo (MCMC) methods. The integrated nested Laplace approximation (INLA) is a recent and attractive approach for doing Bayesian inference but in its natural definition cannot fit mixture models. This paper focuses on the implementation of a feasible INLA extension for fitting standard mixture cure models. Our proposal is based on an iterative algorithm which combines the use of INLA for estimating the process of interest in each of the subpopulations in the study, and Gibbs sampling for computing the posterior distribution of the cure latent indicator variable which classifies individuals to the susceptible or non-susceptible subpopulations. We illustrated our approach by means of the analysis of two paradigmatic datasets in the framework of clinical trials. Outputs provide closing estimates and a substantial reduction of computational time in relation to those using MCMC.

  • Referencias bibliográficas
    • Akerkar R, Martino S, Rue H (2010) Implementing approximate bayesian inference for survival analysis using integrated nested laplace approximations....
    • Bivand RS, Gómez-Rubio V, Rue H (2014) Approximate bayesian inference for spatial econometrics models. Spat Stat 9:146–165
    • Cai C, Zoua Y, Pengb Y, Zhanga J (2012) smcure: An r-package for estimating semiparametric mixture cure models. Comput Meth Prog Biomed 108:1255–1260
    • Christensen R, Wesley J, Branscum A, Hanson TE (2011) Bayesian ideas and data analysis: an introduction for scientists and statisticians....
    • Cox DR (1972) Regression models and life-tables. J R Stat Soc: Sei B (Methodol) 34(2):187–220
    • Diebolt J, Robert CP (1994) Estimation of finite mixture distributions through bayesian sampling. J R Stat Soc: Ser B (Methodol) 363–375
    • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472
    • Gómez-Rubio V (2018) Mixture model fitting using conditional models and modal Gibbs sampling. arXiv:1712.09566 pp 1–37
    • Gómez-Rubio V, Rue H (2018) Markov chain monte carlo with the integrated nested laplace approximation. Stat Comput 28(5):1033–1051
    • Hennerfeind A, Brezger A, Fahrmeir L (2006) Geoadditive survival models. J Am Stat Assoc 101(475):1065–1075
    • Hurtado Rúa SM, Dey DK (2016) A transformation class for spatio-temporal survival data with a cure fraction. Stat Methods Med Res 25:167–187
    • Ibrahim JG, Chen MH, Sinha D (2001) Bayesian survival analysis. Springer, New York
    • Kersey JH, Weisdorf D, Nesbit ME, LeBien TW, Woods WG, McGlave PB, Kim T, Vallera DA, Goldman AI, Bostrom B et al (1987) Comparison of autologous...
    • Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH (1996) Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous...
    • Lambert PC, Thompson JR, Weston CL, Dickman PW (2007) Estimating and modeling the cure fraction in population-based cancer survival analysis....
    • Lázaro E, Armero C, Alvares D (2018) Bayesian regularization for flexible baseline hazard functions in Cox survival models (submitted)
    • Loredo TJ (1989) From laplace to supernova sn 1987a: Bayesian inference in astrophysics. In: Fougère PF (ed) Maximum entropy and Bayesian...
    • Loredo TJ (1992) Promise of Bayesian inference for astrophysics. In: Feigelson E, Babu G (eds) Statistical challenges in modern astronomy....
    • Marin JM, Mengersen K, Robert CP (2005) Bayesian modelling and inference on mixtures of distributions. In: Dey D, Rao C (eds) Bayesian thinking,...
    • Martino S, Akerkar R, Rue H (2011) Approximate bayesian inference for survival models. Scand J Stat 38(3):514–528
    • Meeker WQ (1987) Limited failure population life tests: application to integrated circuit reliability. Technometrics 29(1):51–65
    • Peng Y, Taylor J (2014) Cure models. In: Klein J, van Houwelingen H, Ibrahim JG, Scheike TH (eds) Handbook of survival analysis. Chapman and...
    • Plummer M (2003) JAGS: a program for analysis of bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd international...
    • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
    • Robinson M (2014) Mixture cure models: simulation comparisons of methods in R and SAS. Ph.D. thesis, University of South Carolina, USA
    • Rondeau V, Schaffner E, Corbière F, González JR, Mathoulin-Pélissier S (2013) Cure frailty models for survival data: application to recurrences...
    • Rue H, Held L (2005) Gaussian Markov random fields: theory and applications. Chapman & Hall/CRC Press, Boca Raton
    • Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations....
    • Rue H, Riebler A, Sørbye SH, Illian JB, Simpson DP, Lindgren FK (2017) Bayesian computing with INLA: a review. Annu Rev Stat Appl 4:395–421
    • Schmidt P, Witte AD (1989) Predicting criminal recidivism using ‘split population’ survival time models. J Econom 40(1):141–159
    • Sposto R (2002) Cure model analysis in cancer: an application to data from the children’s cancer group. Stat Med 21:293–312
    • Stephens M (2000) Dealing with label switching in mixture models. J R Stat Soc: Ser B (Methodol) 62(4):795–809

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno