Ir al contenido

Documat


A goodness-of-fit test for regression models with spatially correlated errors

  • Andrea Meilán-Vila [1] ; Jean D. Opsomer [3] ; Mario Francisco-Fernández [1] ; Rosa M. Crujeiras [2]
    1. [1] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

    2. [2] Universidade de Santiago de Compostela

      Universidade de Santiago de Compostela

      Santiago de Compostela, España

    3. [3] Westat, 1600 Research Boulevard, Rockville, MD, 20850, USA
  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 29, Nº. 3, 2020, págs. 728-749
  • Idioma: inglés
  • DOI: 10.1007/s11749-019-00678-y
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The problem of assessing a parametric regression model in the presence of spatial correlation is addressed in this work. For that purpose, a goodness-of-fit test based on a L2-distance comparing a parametric and nonparametric regression estimators is proposed. Asymptotic properties of the test statistic, both under the null hypothesis and under local alternatives, are derived. Additionally, a bootstrap procedure is designed to calibrate the test in practice. Finite sample performance of the test is analyzed through a simulation study, and its applicability is illustrated using a real data example.

  • Referencias bibliográficas
    • Alcalá J, Cristóbal J, González-Manteiga W (1999) Goodness-of-fit test for linear models based on local polynomials. Stat Probab Lett 42:39–46
    • Azzalini A, Bowman AW, Härdle W (1989) On the use of nonparametric regression for model checking. Biometrika 76:1–11
    • Biedermann S, Dette H (2000) Testing linearity of regression models with dependent errors by kernel based methods. Test 9:417–438
    • Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis: the kernel approach with S-Plus illustrations, vol 18. OUP Oxford,...
    • Bowman AW, Crujeiras RM (2013) Inference for variograms. Comput Stat Data Anal 66:19–31
    • Cressie N (1985) Fitting variogram models by weighted least squares. J Int Assoc Math Geol 17:563–586
    • Cressie NA (1993) Statistics for spatial data. Wiley, New York
    • Crujeiras RM, Van Keilegon I (2010) Least squares estimation of nonlinear spatial trends. Comput Stat Data Anal 54:452–465
    • Diblasi A, Bowman A (2001) On the use of the variogram in checking for independence in spatial data. Biometrics 57:211–218
    • Diggle P, Ribeiro PJ (2007) Model-based geostatistics. Springer, New York
    • Eubank RL, Spiegelman CH (1990) Testing the goodness of fit of a linear model via nonparametric regression techniques. J Am Stat Assoc 85:387–392
    • Eubank RL, Li CS, Wang S (2005) Testing lack-of-fit of parametric regression models using nonparametric regression techniques. Stat Sin 15:135–152
    • Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman and Hall, London
    • Fernández-Casal R (2016) npsp: nonparametric spatial (geo)statistics, R package version 0.5-3. http://cran.r-project.org/package=npsp....
    • Fernández-Casal R, Castillo-Páez S, García-Soidán P (2017) Nonparametric estimation of the small-scale variability of heteroscedastic spatial...
    • Francisco-Fernandez M, Opsomer JD (2005) Smoothing parameter selection methods for nonparametric regression with spatially correlated errors....
    • Francisco-Fernández M, Jurado-Expósito M, Opsomer J, López-Granados F (2006) A nonparametric analysis of the spatial distribution of Convolvulus...
    • Francisco-Fernández M, Quintela-del Río A, Fernández-Casal R (2012) Nonparametric methods for spatial regression. An application to seismic...
    • González-Manteiga W, Crujeiras RM (2013) An updated review of Goodness-of-Fit tests for regression models. Test 22:361–411
    • González-Manteiga W, Vilar-Fernández J (1995) Testing linear regression models using non-parametric regression estimators when errors are...
    • Hallin M, Lu Z, Tran LT (2004) Local linear spatial regression. Ann Stat 32:2469–2500
    • Härdle W, Mammen E (1993) Comparing nonparametric versus parametric regression fits. Ann Stat 21:1926–1947
    • Harper WV, Furr JM (1986) Geostatistical analysis of potentiometric data in Wolfcamp aquifer of the Palo Duro Basin, Texas. Technical report,...
    • Kim TY, Ha J, Hwang SY, Park C, Luo ZM (2013) Central limit theorems for reduced U-statistics under dependence and their usefulness. Aust...
    • Li CS (2005) Using local linear kernel smoothers to test the lack of fit of nonlinear regression models. Stat Methodol 2:267–284
    • Liu XH (2001) Kernel smoothing for spatially correlated data. Ph.D. thesis, Department of Statistics, Iowa State University
    • Maglione D, Diblasi A (2004) Exploring a valid model for the variogram of an isotropic spatial process. Stoch Environ Res Risk Assess 18:366–376
    • Nadaraya EA (1964) On estimating regression. Theory Probab Appl 9:141–142
    • Opsomer J, Francisco-Fernández M (2010) Finding local departures from a parametric model using nonparametric regression. Stat Pap 51:69–84
    • Park C, Kim TY, Ha J, Luo ZM, Hwang SY (2015) Using a bimodal kernel for a nonparametric regression specification test. Stat Sin 25:1145–1161
    • R Development Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria....
    • Ribeiro PJ, Diggle PJ (2016) geoR: analysis of geostatistical data, R package version 1.7-5.2. https://cran.r-project.org/package=geoR....
    • Rozanov YA (1967) Stationary random processes. Holden Day, Oakland
    • Ruppert D, Wand MP (1994) Multivariate locally weighted least squares regression. Ann Stat 22:1346–1370
    • Vilar-Fernández J, González-Manteiga W (1996) Bootstrap test of goodness of fit to a linear model when errors are correlated. Commun Stat...
    • Watson GS (1964) Smooth regression analysis. Sankhya 26:359–372
    • Weihrather G (1993) Testing a linear regression model against nonparametric alternatives. Metrika 40:367–379

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno