Ir al conteni
d
o
B
uscar
R
evistas
T
esis
Libr
o
antiguo
Co
n
gresos
A
u
tores
Ayuda
Cambiar idioma
Idioma
català
Deutsch
English
español
euskara
français
galego
italiano
português
română
Cambiar
The Kolmogorov–Riesz theorem and some compactness criterions of bounded subsets in weighted variable exponent amalgam and Sobolev spaces
Autores:
Ismail Aydın, Cihan Unal
Localización:
Collectanea mathematica
,
ISSN
0010-0757,
Vol. 71, Fasc. 3, 2020
,
págs.
349-367
Idioma:
inglés
DOI
:
10.1007/s13348-019-00262-5
Texto completo no disponible
(Saber más ...)
Referencias bibliográficas
Aydın, I.: On variable exponent amalgam spaces. An. Ştiin ţ. Univ. “Ovidius” Constanţa Ser. Mat. 20(3), 5–20 (2012)
Aydın, I.: Weighted variable Sobolev spaces and capacity. J. Funct. Spaces Appl. (2012). https://doi.org/10.1155/2012/132690
Aydın, I.: On vector-valued classical and variable exponent amalgam spaces. Commun. Fac. Sci. Univ. Ank. Series A1 66(2), 100–114 (2017)
Aydın, I., Gurkanli, A.T.: Weighted variable exponent amalgam spaces $$W\left( L^{p(x)}, L_{w}^{q}\right) $$. Glas. Mat. 47(67), 165–174 (2012)
Bandaliyev, R.: Compactness criteria in weighted variable Lebesgue spaces. Miskolc Math. Notes 18(1), 95–101 (2017)
Bandaliyev, R., Górka, P.: Relatively compact sets in variable-exponent Lebesgue spaces. Banach J. Math. Anal. 12(2), 331–346 (2018)
Diening, L., Hästö, P.: Muckenhoupt weights in variable exponent spaces (preprint)
Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics 29. American Mathematical Society, Providence (2000)
Feichtinger, H.G.: A compactness criterion for translation invariant Banach spaces of functions. Anal. Math. 8, 165–172 (1982)
Fournier, J.J., Stewart, J.: Amalgams of $$L^{p}$$ and $$l^{q}$$. Bull. Am. Math. Soc. 13, 1–21 (1985)
Goes, S., Welland, R.: Compactness criteria for Köthe spaces. Math. Ann. 188, 251–269 (1970)
Górka, P., Macios, A.: The Riesz-Kolmogorov theorem on metric spaces. Miskolc Math. Notes 15(2), 459–465 (2014)
Górka, P., Macios, A.: Almost everything you need to know about relatively compact sets in variable Lebesgue spaces. J. Funct. Anal. 269(7),...
Górka, P., Rafeiro, H.: From Arzelà–Askoli to Riesz–Kolmogorov. Nonlinear Anal. 144, 23–31 (2016)
Grubb, G.: Distributions and Operators. Springer, New York (2009)
Gurkanli, A.T.: The amalgam spaces $$W(L^{p(x)};L^{\left\lbrace p_{n}\right\rbrace })$$ and boundedness of Hardy-Littlewood maximal operators....
Gurkanli, A.T., Aydın, I.: On the weighted variable exponent amalgam space $$W(L^{p(x)};L_{m}^{q})$$. Acta Math. Sci. 34(4), 1098–1110 (2014)
Hanche-Olsen, H., Holden, H.: The Kolmogorov–Riesz compactness theorem. Expo. Math. 28(4), 385–394 (2010)
Hanche-Olsen, H., Holden, H.: Addendum to “The Kolmogorov–Riesz compactness theorem” [Expo. Math. 28 (2010) 385–394]. Expo. Math. 34, 243–245...
Hanche-Olsen, H., Holden, H., Malinnikova, E.: An improvement of the Kolmogorov–Riesz compactness theorem. Expo. Math. 37, 84–91 (2019)
Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext (2001)
Holland, F.: Harmonic analysis on amalgams of $$L^{p}$$ and $$l^{q}$$. J. Lond. Math. Soc. 10(3), 295–305 (1975)
Kokilashvili, V., Meskhi, A., Zaighum, M.A.: Weighted kernel operators in variable exponent amalgam spaces. J. Inequal. Appl. (2013). ...
Kolmogorov, A.N.: Über Kompaktheit der Funktionenmengen bei der Konvergenz im Mittel. Nachr. Ges. Wiss. Göttingen 9, 60–63 (1931)
Kováčik, O., Rákosník, J.: On spaces $$ L^{p(x)}$$ and $$W^{k, p(x)}$$. Czechoslovak Math. J. 41(116)(4), 592–618 (1991)
Kulak, O., Gurkanli, A.T.: Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces. J. Inequal....
Lahmi, B., Azroul, E., El Haitin, K.: Nonlinear degenerated elliptic problems with dual data and nonstandard growth. Math. Rep. 20(70)(1),...
Liu, Q.: Compact trace in weighted variable exponent Sobolev spaces $$W^{1, p(x)}\left( \varOmega ,\upsilon _{0},\upsilon _{1}\right) $$....
Meskhi, A., Zaighum, M.A.: On the boundedness of maximal and potential operators in amalgam spaces. J. Math. Inequal. 8(1), 123–152 (2014)
Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, 1034. Springer, Berlin (1983)
Pandey, S.S.: Compactness in Wiener amalgams on locally compact groups. Int. J. Math. Math. Sci. 2003(55), 3503–3517 (2003)
Rafeiro, H.: Kolmogorov compactness criterion in variable exponent Lebesgue spaces. Proc. A. Razmadze Math. Inst. 150, 105–113 (2009)
Squire, M.L.T.: Amalgams of $$L^{p}$$ and $$l^{q}$$. Ph.D. Thesis, McMaster University (1984)
Sudakov, V.N.: Criteria of compactness in function spaces. Upsekhi Math. Nauk. 12, 221–224 (1957). (in Russian)
Takahashi, T.: On the compactness of the function-set by the convergence in the mean of general type. Studia Math. 5, 141–150 (1934)
Weil, A.: L’integration Dans Les Groupes Topologiques et Ses Applications. Hermann et Cie, Paris (1940)
Wiener, N.: On the representation of functions by trigonometrical integrals. Math. Z. 24, 575–616 (1926)
Yosida, K.: Functional Analysis. Springer, Berlin (1980)
Acceso de usuarios registrados
Identificarse
¿Olvidó su contraseña?
¿Es nuevo?
Regístrese
Ventajas de registrarse
Mi Documat
S
elección
Opciones de artículo
Seleccionado
Opciones de compartir
Facebook
Twitter
Opciones de entorno
Sugerencia / Errata
©
2008-2024
Fundación Dialnet
· Todos los derechos reservados
Accesibilidad
Aviso Legal
Coordinado por:
I
nicio
B
uscar
R
evistas
T
esis
Libr
o
antiguo
A
u
tores
Ayuda
R
e
gistrarse
¿En qué podemos ayudarle?
×
Buscar en la ayuda
Buscar