Ir al contenido

Documat


Kakeya–Brascamp–Lieb inequalities

  • Autores: Pavel Zorin-Kranich
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 71, Fasc. 3, 2020, págs. 471-492
  • Idioma: inglés
  • DOI: 10.1007/s13348-019-00273-2
  • Texto completo no disponible (Saber más ...)
  • Referencias bibliográficas
    • Bennett, J., Bez, N., Gutiérrez, S.: Transversal multilinear Radon-like transforms: local and global estimates. Rev. Mat. Iberoam. 29(3),...
    • Bennett, J., Carbery, A., Tao, T.: On the multilinear restriction and Kakeya conjectures. Acta Math. 196(2), 261–302 (2006). https://doi.org/10.1007/s11511-006-0006-4 ....
    • Bourgain, J., Demeter, C.: The proof of the $$l^2$$ decoupling conjecture. Ann. Math. (2) 182(1), 351–389 (2015). https://doi.org/10.4007/annals.2015.182.1.9 ....
    • Bourgain, J., Demeter, C.: A study guide for the $$l^2$$ decoupling theorem. Chin. Ann. Math. Ser. B 38(1), 173–200 (2017). https://doi.org/10.1007/s11401-016-1066-1 ....
    • Bourgain, J., Demeter, C., Guth, L.: Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three. Ann. Math....
    • Bennett, J., et al.: Stability of the Brascamp–Lieb constant and applications. Am. J. Math. 140(2), 543–569 (2018). https://doi.org/10.1353/ajm.2018.0013 ....
    • Bennett, J., et al.: The Brascamp–Lieb inequalities: finiteness, structure and extremals. Geom. Funct. Anal. 17(5), 1343–1415 (2008). https://doi.org/10.1007/s00039-007-0619-6 ....
    • Bennett, J., et al.: Finite bounds for Hölder–Brascamp–Lieb multilinear inequalities. Math. Res. Lett. 17(4), 647–666 (2010). https://doi.org/10.4310/MRL.2010.v17.n4.a6 ....
    • Bennett, J., et al.: Behaviour of the Brascamp–Lieb constant. Bull. Lond. Math. Soc. 49(3), 512–518 (2017). https://doi.org/10.1112/blms.12049 ....
    • Bourgain, J., Guth, L.: Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal. 21(6), 1239–1295 (2011)....
    • Brascamp, H.J., Lieb, E.H.: Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Adv....
    • Carbery, A., Hänninen, T. S., Valdimarsson, S.I.: Multilinear duality and factorisation for Brascamp–Lieb-type inequalities with applications....
    • Carbery, A., Valdimarsson, S.I.: The endpoint multilinear Kakeya theorem via the Borsuk–Ulam theorem. J. Funct. Anal. 264(7), 1643–1663 (2013)....
    • Finner, H.: A generalization of Hölder’s inequality and some probability inequalities. Ann. Probab. 20(4), 1893–1901 (1992)
    • Fulton, W.: Intersection Theory, 2nd edn. Springer, Berlin (1998). ISBN: 978-0-387-98549-7. https://doi.org/10.1007/978-1-4612-1700-8
    • Garg, A., et al.: Algorithmic and optimization aspects of Brascamp–Lieb inequalities, via operator scaling. Geom. Funct. Anal. 28(1), 100–145...
    • Guth, L.: The endpoint case of the Bennett–Carbery–Tao multilinear Kakeya conjecture. Acta Math. 205(2), 263–286 (2010). https://doi.org/10.1007/s11511-010-0055-6 ....
    • Guth, L.: A short proof of the multilinear Kakeya inequality. Math. Proc. Cambr. Philos. Soc. 158(1), 147–153 (2015). https://doi.org/10.1017/S0305004114000589 ....
    • Guo, S., Zorin-Kranich, P.: Decoupling for moment manifolds associated to Arkhipov–Chubarikov–Karatsuba systems. Adv. Math. (2019). https://doi.org/10.1016/j.aim.2019.106889
    • John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on his 60th Birthday,...
    • Lieb, E.H.: Gaussian kernels have only Gaussian maximizers. Invent. Math. 102(1), 179–208 (1990). https://doi.org/10.1007/BF01233426
    • Loomis, L.H., Whitney, H.: An inequality related to the isoperimetric inequality. Bull. Am. Math. Soc 55, 961–962 (1949). https://doi.org/10.1090/S0002-9904-1949-09320-5
    • Maldague, D.: Weak Hölder–Brascamp–Lieb inequalities. Preprint (2019). arXiv:1904.06450 [math.CA]
    • Matouek, J.: Using the Borsuk–Ulam theorem. Universitext. Lectures on topological methods in combinatorics and geometry, Written in cooperation...
    • Rogers, C.A., Shephard, G.C.: Convex bodies associated with a given convex body. J. Lond. Math. Soc. 33, 270–281 (1958). https://doi.org/10.1112/jlms/s1-33.3.270
    • Schep, A.R.: Factorization of positive multilinear maps. Illinois J. Math. 28(4), 579–591 (1984)
    • Zhang, R.: The endpoint perturbed Brascamp–Lieb inequalities with examples. Anal. PDE 11(3), 555–581 (2018). https://doi.org/10.2140/apde.2018.11.555 ....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno